
Distributed coding using punctured quasi-arithmetic
codes for memory and memoryless sources

Simon Malinowski
IRISA/Univ. of Rennes

Simon.Malinowski@irisa.fr

Xavi Artigas
Technical University of Catalunya

xavi@gps.tsc.upc.edu

Christine Guillemot
IRISA/INRIA

Christine.Guillemot@irisa.fr

Luis Torres
Technical University of Catalunya

luis@gps.tsc.upc.edu

Abstract— This paper considers the use of punctured quasi-
arithmetic (QA) codes for the Slepian-Wolf problem. These
entropy codes are defined by finite state machines for memoryless
and first-order memory sources. Puncturing an entropy coded
bit-stream leads to an ambiguity at the decoder side. The decoder
makes use of a correlated version of the original message in order
to remove this ambiguity. A complete distributed source coding
(DSC) scheme based on QA encoding with side information at
the decoder is presented, together with iterative structures based
on QA codes. The proposed schemes are adapted to memoryless
and first-order memory sources. Simulation results reveal that the
proposed schemes are efficient in terms of decoding performance
for short sequences compared to well-known DSC solutions using
channel codes.

I. I NTRODUCTION

Distributed source coding (DSC) addresses the problem
of compressing correlated sourcesX and Y by encoding
them separately and jointly decoding them. DSC is mainly
applied in sensor networks, where several sensors measure
a given signal and provide these correlated measures to a
base station, which decodes them jointly. Recently, DSC has
also been applied to video compression by exploiting the
temporal correlation between consecutive images in a video
sequence [1] [2] [3]. This correlation between consecutive
images is used at the decoder side. DSC theory is based on the
Slepian-Wolf theorem established in [4]. This theorem states
that, even if the encoders ofX andY do not communicate with
each other, lossless compression ofX andY can be achieved
if the ratesRX and RY satisfy RX + RY ≤ H(X, Y),
provided thatX andY are decoded jointly. Later, this result
was extended in [5] in order to compute rate-distortion bounds.
In this paper, we focus on the so-calledasymmetric Slepian-
Wolf problem, in which the second sourceY is encoded
at its entropy rateH(Y) and the first oneX at the rate
H(X |Y). At the decoder side,X is estimated using its
compressed version and the side informationY . The first
practical application of the asymmetric Slepian-Wolf problem
has been proposed in [6]. This solution is called DIstributed
Source Coding Using Syndromes and consists in transmitting
a syndrome instead of a complete codeword.. More recent
practical applications of the asymmetric Slepian Wolf problem
mostly use capacity-approaching channel codes in order to
compress the original message. Regular turbo codes are for
instance used in [7][8][9], whereas low density parity check

codes are used in [10]. Recently, irregular turbo codes have
been applied to the Slepian-Wolf problem in [11].

Entropy codes have also been used recently for the Slepian-
Wolf problem. The idea behind using source codes for that
issue is to exploit their high compression capability together
with their capability to exploit the source memory. In [12],the
authors have designed Huffman codes for multilevel sources.
Two approaches based on overlapped arithmetic and quasi-
arithmetic (QA) codes have also been developed in parallel
in [13] and in [14]. The overlapping mechanism introduced
in the arithmetic encoding process induces some ambiguity
in the encoded bit-stream. The decoder makes use of the
correlated source in order to remove this ambiguity. This
technique reveals better performance than the techniques based
on channel codes for short sequences. Using entropy codes for
DSC presents many interests:

• In contrast with entropy codes, channel codes are more
efficient for long sequences (typically more than104

symbols).
• Entropy codes are better suited to take into account the

source probabilities and the memory of the source.

Recent research have been aimed at improving the per-
formance of channel codes in the DSC context for short
sequences, in [15] and [16] for instance.

In this paper, we propose an alternative DSC scheme based
on QA codes, adapted to memoryless sources and sources
with memory. It is shown in [17] that QA codes adapted
to memoryless sources can be represented by finite state
machines (FSM). Hence, an optimal BCJR algorithm [18]
can be applied at the decoder side, using the state model
proposed in [19]. In order to exploit the side information
available at the decoder (correlated version of the original
message), the branch metrics of the BCJR algorithm have to
be modified. The FSM are then extended to account for the
realization of the previous symbol, so that the proposed DSC
scheme can be applied to sources with memory. Then, we have
designed iterative structures involving QA codes in order to
improve the decoding performance of punctured QA codes.
These structures are detailed in this paper. The performance of
punctured QA code for Slepian-Wolf coding has been assessed
against the one obtained with turbo codes, for both memory
and memoryless sources.

QA encoder Puncturing Ideal Channel BCJR decoder

Y

S Ŝ

BSC crossover π

Fig. 1. The proposed DSC scheme

II. D ESCRIPTION OF THE PROPOSEDDSC SCHEME

The proposed DSC scheme is represented in Fig.1. Let
S = S1, . . . , SL(S) be a source sequence of lengthL(S) taking
its value into the binary alphabetA = {a, b}. The probability
of the more probable symbol (MPS),P(a) will be denotedp
in the following. Note that, for sake of clarity, only binary
sources are considered in this article, but the whole method
can be applied to non-binary sources. The symbol sequenceS

is encoded using a QA code, producing the bit-streamX =
X1, . . . , XL(X) of variable lengthL(X). In order to reach a
targeted overall rate, some bits ofX are punctured. The re-
sulting bit-stream is sent over an ideal channel. At the decoder
side, a BCJR algorithm [18] is applied. This algorithm makes
use of the received bits ofX, together with an additional side
informationY. This side information is obtained by passingS

through a binary symmetrical channel of crossover probability
π. In other words,∀i ∈ {1, ..., L(S)}, P(Yi = Si) = 1 − π.
In the following, the notationY m′

m will denote the sequence
Ym, . . . , Ym′ . This scheme is explained in more detail in the
rest of this section.

A. Quasi-arithmetic codes

In classical arithmetic coding, the initial interval[0, 1] is
recursively partitioned according to the source sequence and
the source probabilities. The width of the final interval is
equal to the probability of the source sequence that has to
be transmitted. A bit sequence that distinguishes this final
interval from all the others is then sent. The major drawbackof
arithmetic coding is that the encoding and decoding processes
cannot be modeled with automata or finite state machines.

The authors of [20] have shown that by working on in-
teger intervals rather than on real ones, the loss in terms
of compression was very slight. This new kind of codes is
called quasi-arithmetic codes. QA codes are hence defined by
an integerN that represent the width of the initial interval.
The interest of these codes is that they can be represented
by automata. The states of this automata are tuples(l, u, f)
as proposed in [19], wherel andh respectively represent the
lower and upper bound of the current intervalIc, and where
f is an integer. The construction of the automata representing
the encoder of a binary QA code is detailed in the following.

1) The initial state of the automata is(0, N, 0): the initial
interval being[0, N [andf being initialized to0.

2) Ic is partitioned intoIa
c = [la, ua[and Ib

c = [lb, ub[,
according to the source probabilityp = P(a)

3) Ia
c andIb

c are rescaled (according to the rescaling rules
described below) if and as many times as necessary

4) Two states are obtained:(la, ua, fa) and (lb, ub, f b).
These states are added to the automata if they were not

5) Step 2,3,4 are repeated for each new state of the au-
tomata

The rescaling rules of the third step below are the following.
A sub-interval[l, u[is rescaled if

1) u < N/2. Then, l → 2l and u → 2u. 0 is emitted,
followed by f bits 1. f → 0.

2) l > N/2. Then,l → 2(l − N/2) andu → 2(u − N/2).
1 is emitted, followed byf bits 0. f → 0.

3) N/4 ≤ l < N/2 ≤ u < 3N/4. Thenl → 2× (l−N/4)
andu → 2 × (u − N/4). f → f + 1.

Using this representation, the number of states may grow to
infinity, due to the integerf that can be unbounded. In order
to keep the number of states finite, authors of [17] have chosen
to keepf below a thresholdFmax. Whenf equalsFmax, the
source probabilities are modified in order to force the encoder
to use the rescaling rule 1 or 2, so that bits are emitted andf
is reset to0.

Following the procedure described above, the encoder of a
QA code can be represented by a FSM. Transitions on this
FSM are labeled with symbols as input and bits as output.
The decoder FSM can be obtained from the encoder one.

In [17], only memoryless sources are considered. In the
following, we will also consider first-order memory sources.
The construction of the encoding automaton representing a
QA code for a first-order memory source is detailed hereafter.
A first order memory source is uniquely defined by the
probability of the MPSP(a) = p and a correlation coefficient
ρm (ρm ∈ [−1, 1]). Then, we have

P(a | a) = 1 + (ρm − 1)(1 − p)
P(b | b) = 1 + (ρm − 1)p.

(1)

The design of QA codes for first order memory sources is
inspired from the description above. The initial state of the
automata is set to(0, N, 0) (as the step 1 for memoryless
sources). Two new states are computed for symbolsa and b
by partitioning the interval[0, N] according top and 1 − p
respectively (steps 2 and 3). However, in order to account
for the memory of the source, the previous symbol has to
be integrated in the states of the automata. Hence, the states
(apart from the initial one) are composed by tuples(l, u, f, s)
wheres represents the previous symbol. For every state that
is created, steps 2,3 and 4 are repeated. However, in order

1 (a) 3 (a)

0 5 (a)

2 (b)
4 (a)

a/−

b/11 a/−

b/101

b/100

a/−

b/111

b/1

a/0

a/− a/0

b/110

Fig. 2. Encoding automaton for a QA code with memory. This automaton
is designed forp = 0.8 andρm = 0.3

to partition the current interval, the probabilitiesP(a | a) and
P(b | a) for each state such thats = a and the probabilities
P(a | b) andP(b | b) for the states such thats = b.

The encoding automaton forp = 0.8 and ρm = 0.3 is
depicted in Fig.2. This automaton has been built according
to the technique described above. The initial state of this
automaton is state0, corresponding to the tuple(0, 8, 0) (this
state does not contain the memory of the previous symbol).
Note that the symbol in parenthesis in the labeling of a state
corresponds to the memory of the previous symbol.

B. Puncturing

The encoding ofS results in a bit-streamX of variable
lengthL(X). Let us denote byRq the compression rate of the
considered QA code. Then the average length ofX is equal to
Rq ×L(S). Let a targeted compression rate be denoted byRt,
with Rt < Rq. In order to reachRt, d(Rq−Rt)×L(S)e bits in
X have to be punctured. Different techniques exist in order to
find the puncturing positions. In [21], the bits are insertedline
by line into a square matrix, and punctured column by column.
In our case, the best decoding results have been obtained
by spreading the punctured bits along the bit-stream. The
punctured bits are separated byb(Rq−Rt)×L(S)/L(X)−1c
bit positions. Note that if(Rq − Rt) × L(S) > L(X)/2 (i.e.,
if more than half of the bits inX have to be punctured),
the above technique is used to compute the non-punctured
positions. The interest of this technique is that the decoder
only needs to know the interval between two punctured bits
to recover the punctured positions (it is assumed that the first
punctured bit is in the first position).

C. Soft decoding with side information

In this section, the decoding algorithm of punctured quasi-
arithmetic codes with side information is detailed. As the side
information is an information about the symbols, an automaton
sequential with respect to symbols is used (as the one of
Figure 2 for example). LetI = {e0, . . . , ed} be the set of
states of the QA automaton. For every transitiont in the

automaton, letbt denote the sequence of bits output byt
and bt the length ofbt. In the proposed DSC scheme, the
BCJR decoder takes as input the received bit-streamX (that
contains punctured bits) and the side informationY. In order
to optimally exploit the side information on the symbols, a
symbol clock based state model is used. This model is adapted
from the model proposed in [19] for QA codes. It is defined
by the pair of random variablesVk = (Nk, Mk), whereNk is
the state of the QA automaton at the symbol clock instantk
(i.e.,Nk ∈ I), andMk represents the possible bit clock values
at the symbol clock instantk. The transition probabilities on
this model are given by:

∀(ei, ej) ∈ I × I, ∀(m, m′) ∈ N × N

P(Nk = ei, Mk = m′ |Nk−1 = ej , Mk−1 = m) =
{

P(Nk = ei |Nk−1 = ej) if m′ − m = bt

0 otherwise,
(2)

where P(Nk = ei |Nk−1 = ej) are deduced from the
source statistics. This model allows us to integrate the side
information brought byY in the decoding trellis. To take
into account this additional information, the branch metric
γk(Nk, Mk |Nk−1, Mk−1) of a transition, triggered by symbol
s, in the trellis is modified as follows :

γk(Nk = ei, Mk = m′ |Nk−1 = ej, Mk−1 = m) =

P(Nk = ei, Mk = m′|Nk−1 = ej, Mk−1 = m)

× P(Xm′

m = bt) × P(Sk = s |Yk), (3)

whereP(Xm′

m = bt) is computed fromX (taking into account
the punctured bits inX) andP(Sk = s |Yk) is computed from
the correlation factorπ betweenS andY.

The BCJR algorithm, is applied on the state model
(Nk, Mk) defined above. For all statev = (n, m), n ∈ I, 1 ≤
m ≤ L(X) of the trellis, the following probability functions
are computed:

αk(v) = P(Vk = v;Yk
1) (4)

βk(v) = P(Y
L(S)
k+1 | Vk = v), (5)

for 1 ≤ k ≤ L(S). Let us define, for every symbols of
the alphabet, the setΩ(s) of state pairs (v = (n, m), v′ =
(n′, m′)) in the decoding trellis, such that the input symbol
of the transition fromv to v′ is equal tos. Then, the symbol
marginal probabilities on the trellis defined by the statesVk

are obtained by:

∀k ∈ [1, L(S)], ∀s ∈ A,

P(Sk = s |X
L(X)
1 ; Y

L(S)
1)

∝
∑

(v,v′)∈Ω(s)

αk(v)βk+1(v
′) γk+1(v

′ | v), (6)

whereγk+1(v
′ | v) is calculated from Eqn.3.

The BCJR algorithm applied on this state model allows
the computation of posterior symbol marginals, and hence the
minimization of the symbol error rate.

III. I TERATIVE STRUCTURES FOR DISTRIBUTED

QUASI-ARITHMETIC CODING

In this section, two iterative structures involving QA codes
for distributed source coding are described. The first one isa
parallel concatenation of two QA codes, and the second one
is a serial concatenation of a QA code and a convolutional
code (CC). The encoders and decoders of these structures
are detailed hereafter. Some decoding performance of these
structures are given in the next section.

A. Parallel QA-QA structure

The encoder and decoder of the parallel QA-QA structure
are given in Fig. 3-a) and 3-b) respectively. This structureis
similar to a parallel turbo-code where the convolutional codes
are replaced by QA codes. The input symbol streamS and its
interleaved version are encoded with two QA codes leading
to the bit-streamsX1 andX2 respectively. These bit-streams
are punctured to reach the desired transmission rate. The
puncturing is a regular puncturing scheme as detailed above.
X1 andX2 are then transmitted over an ideal channel. The side
informationY is assumed to be available at the decoder. Note
that the interleaver in this structure is a random interleaver
of length L(S). Note also that the QA codes are adapted to
the source probabilityp of the input message. Hence, if the
source is a first order memory source with a given correlation
factor ρm, the first QA code will be adapted to that source.
However, due to the interleaver in the second branch of the
encoder, the input of the second QA code is a memoryless
binary source with probabilityp. The second QA code will
hence be adapted to that stationary source.

At the decoder side, both QA decoders make use of the
corresponding bit-stream (X1 or X2), the side information
(interleaved or not) and the extrinsic probability coming from
the other QA decoder. At the output of a QA decoder, a symbol
a posteriori probability (APP) is computed as explained in the
previous section. In order to compute the symbol extrinsic
probability at the output a QA decoder, the a priori information
on the symbols are removed from this symbol APP. Here, the
stationary probability of the source (p), the side information
and the extrinsic probability coming from the other BCJR
decoder are removed from the symbol APP. This extrinsic
probability is then provided to the other QA decoder. This
information is used in a similar way as the side information
Y in the decoding algorithm : it is multiplied in the branch
metric of the transitions (cf. Eqn.(3)).

B. Serial QA-CC structure

The encoder and decoder of the serial QA-CC structure
are given in Fig. 4-a) and . 4-b) respectively. The encoder
is a serial concatenation of a QA encoder and a convolutional
code. The input symbol streamS is fed into the QA encoder
leading to a bit-streamX3, which after being interleaved is
encoded using a recursive systematic convolutional code. The
resulting bit-stream is denotedX4. The systematic bits inX4

are punctured together with some parity bits in order to reach
the desired transmission rate.

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

10
−5

10
−4

10
−3

10
−2

10
−1

H(X | Y)

S
E

R

 Punctured QAC
 Parallel QA−QA
 Serial QA−CC
 TC L(S)=100
 TC L(S) = 5000
 LDPC L(S)=100
 LDPC L(S)=5000

Fig. 5. Performance comparison of DSC schemes at an overall rate of 0.4
bps for a memoryless source withp = 0.9

At the decoder side, the CC decoder is based on a BCJR
algorithm taking as input the bits ofX4, whereas the QA
decoder takes as input the side informationY . As an additional
information, both decoders exchange their extrinsic probabili-
ties. The extrinsic probability at the output of the CC decoder
is an information on the bits ofX3. This information is used
by the QA decoder described in the previous section. The term
P(Xm′

m = bt) in (3) is replaced byP(Extr(Xm′

m) = bt). The
extrinsic probability out of the QA decoder is used by the CC
decoder as an information on its input bits.

IV. SIMULATION RESULTS

The DSC schemes described above have been applied to
both memoryless sources and first-order memory sources,
assuming that the correlated side informationY is available
at the decoder.

In the first experiment, we have considered memoryless
sources. Two different sources have been used, the first one
with p = 0.9 and the second withp = 0.8. The entropy
of these two sources is0.4690 and 0.7219 respectively. The
proposed DSC schemes have been applied for sequences of
length L(S) = 100 symbols. The SER at the output of the
decoder is averaged over105 realizations. The average rate at
the input of the ideal channel is set to0.4 bits per input symbol
(bps). The respective symbol error rates at the output of each
decoder for these two different sources are plotted for different
values of the conditional entropyH(Y |X) in Fig. 5 and 6. In
this figures, we have also depicted the decoding performance
of punctured turbo codes for the same simulation parameters.
The considered turbo code is a parallel concatenation of two
(21,37) octal convolutional codes. The interleavers of the
turbo codes are randomly chosen, and 15 iterations have been
computed in order to evaluate the decoding performance of
these codes. Note that, the source probabilities (p = 0.9
or p = 0.8) have been accordingly integrated to the turbo

Symetrical
Channel

Binary

Interleaver

S

Interleaver

De−interleaver

a) b)

QAC1

QAC2

Sint X2

X1

Y

X2, Y
int

X1, Y
BCJR QAC1 BCJR QAC2

Extr(S
int | Y int

)

Ŝ

Extr(S | Y)

Fig. 3. Encoder a) and decoder b) of the parallel QA-QA structure

Binary
Symetrical
Channel

InterleaverInterleaver
Code

S

BCJR CC De−interleaver

a) b)

Convolutional
QAC

X3 X4

Y X4

Extr(X3)

Extr(X
int

3
)

Ŝ

Y

BCJR QAC

Fig. 4. Encoder a) and decoder b) of the serial QA-CC structure

decoder, as this additional information is also available when
QA codes are used. The performance of LDPC codes of [22]
is also depicted on Fig. 5, and the one of overlapped quasi-
arithmetic codes of [13] are given in Fig. 6.

At the overall rate of0.4 bps, punctured QA codes offer
better performance than punctured turbo codes for the two
considered input sources and for the same sequence lengths.
This can be explained by the fact that turbo codes are less
efficient for short sequences. The proposed iterative structures
reduce the SER when the correlation betweenS and Y is
relatively high. The same punctured turbo codes have also
been used for sequences ofL(S) = 5000 symbols. In that
case, as it can be seen in Fig. 5, the performance of these
codes is significantly improved. Indeed, the performance of
turbo codes are improved when the constituent interleaver of
the code is longer. The same conclusions can be drawn with
LDPC codes.

In Fig. 5, the Slepian-Wolf bound is equal toH(X |Y) =
0.4 bps. It means that forp = 0.9, the distance to the limit (for
a bit-error rate of10−5) is equal to 0.29 bps. If a distortion of
10−3 is tolerated, the binary Winer-Ziv limit [5] is obtained
by shifting to the right the Slepian-Wolf bound by about 0.011
bps (corresponding to the entropy of the tolerated distortion).
In that case, the distance to the limit is about 0.19 bps. Note
that when the input source is not uniform, the Slepian-Wolf
bound is shifted to the right, as more information is available.
This explains why the distance to the bound is a bit large here.

We have then considered first order memory sources. The
sources are defined forp = 0.9 and a memory correlation
factorρm = 0.9. The entropy of this source is0.1164. The QA
code adapted to that source leads to an average compression
factor of0.125. The proposed DSC schemes have been applied
for sequences ofL(S) = 100 symbols at an overall rate of
0.09 bps. The decoding performance in terms of SER of the

0.15 0.2 0.25 0.3 0.35 0.4

10
−4

10
−3

10
−2

10
−1

H(X | Y)

S
E

R

 Punctured QAC
 Parallel QA−QA
 Serial QA−CC
 TC L(S)=100
 TC L(S) = 5000
Overlapped QA code

Fig. 6. Performance comparison of DSC schemes at an overall rate of 0.4
bps for a memoryless source withp = 0.8

proposed DSC schemes are depicted in Fig. 7. These results
are compared with a turbo code for the same parameters.
The convolutional codes of this turbo code are the same
as in the first experiment (i.e., (21,37) octal convolutional
code). The decoder of the turbo code consists in two BCJR
algorithms which exchange their extrinsic information. The
first BCJR takes into account the memory of the source,
whereas the second decoder can only take into account the
source probability (p) because this decoder takes as input
an interleaved version of the original message (that contains
memory). Hence, the memory of the source is broken due to
the interleaver in the second branch of the turbo code. The

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

H(X | Y)

S
E

R

Punctured QAC
Serial QA−CC
TC L(S)=100
TC L(S) = 5000
Overlapped QA code

Fig. 7. Performance comparison of DSC schemes at an overall rate of 0.09
bps for a first order memory sourcep = 0.9 ρm = 0.9

performance of overlapped QA codes is also depicted on this
graph for the same simulation parameters.

It can be seen in Fig. 7 that for short sequences, the
punctured QA code performs better than the turbo code based
DSC scheme and the serial QA-CC structure improves the
performance. However, for longer sequences, turbo codes are
more efficient in terms of SER. Note that the parallel QA-QA
structure is not depicted here. For sources with memory, the
memory is broken by the interleaver in the second branch of
the structure. This implies that a memoryless QA code has to
be used in the second branch, hence increasing the rate at the
output of the QA code. This structure is not convenient for
first-order memory sources.

V. CONCLUDING REMARKS

We have proposed in this paper a DSC scheme based on
punctured quasi-arithmetic codes. These codes can be defined
with finite state machines for both memoryless and first-
order memory sources, hence allowing to decode them using
an optimal BCJR algorithm. The compression capability of
these codes together with their capability to integrate extra
information on the source probabilities are exploited by the
proposed DSC scheme. Simulations reveal that this scheme
is able to provide efficient decoding performance for short
sequences compared to well-known DSC schemes based on
channel codes, particularly when the source probability isvery
asymmetric and when the memory correlation factor of the
source is relatively high. This reveals that QA codes are better
suited than channel codes to deal with asymmetric sources.

REFERENCES

[1] R. Puri and K. Ramchandran, “PRISM: A new robust video coding
architecture based on distributed compression principles,” in Allerton
Conf. on Comm. Control and Computing, Oct. 2002.

[2] A. Aaron, R. Zhang, and B. Girod, “Wyner-ziv coding of motion video,”
in Asilomar Conf. on Signals, Systems and Computers, Nov. 2002.

[3] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov, and M. Ouaret,
“The discover codec: Architecture, techniques and evaluation,” in Picture
Coding Symposium, Lisbonne, Portugal,, Nov. 2007.

[4] D. Slepian and J. Wolf, “Noiseless coding of correlated information
sources,”IEEE Trans. Inform. Theory, vol. 19, pp. 471–480, 1973.

[5] A. Wyner and J. Ziv, “The rate distorsion function for source coding with
side information at the decoder,”IEEE Trans. Inform. Theory, vol. 22,
pp. 1–10, Jan. 1976.

[6] S. Pradhan and K. Ramchandran, “Distributed source coding using syn-
dromes (DISCUS): design and construction,” inProc. Data Compression
Conf., DCC, March 1999, pp. 158–167.

[7] J. Bajcsy and P. Mitran, “Coding for the slepian-wolf problem with turbo
codes,” inProc. IEEE Globecom, 2001, pp. 1400–1404.

[8] A. Aaron and B. Girod, “Compression with side information using turbo
codes,” inProc. Data Compression Conf., DCC, 2002, pp. 252–261.

[9] J. Garcia-Frias and Y. Zhao, “Compression of correlatedbinary sources
using turbo codes,”IEEE Commun. Lett., vol. 5, pp. 417–419, Oct. 2001.

[10] A. Liveris, Z. Xiong, and C. Georghiades, “Compressionof binary
sources with side information at the decoder using ldpc codes,” IEEE
Commun. Lett., vol. 6, pp. 440–442, Oct. 2002.

[11] D. V. Renterghem, X. Jaspar, B. Macq, and L. Vanderdorpe, “Distributed
coding with optimized irregular turbo codes,” inProc. Intl. Conf.
Commun., ICC, Glasgow, Scotland, June 2007, pp. 963–968.

[12] Q. Zhao and M. Effros, “Lossless and near lossless source coding for
multiple access network,”IEEE Trans. Inform. Theory, vol. 49, no. 1,
pp. 112–128, Jan. 2003.

[13] X. Artigas, S. Malinowski, C. Guillemot, and L. Torres,“Overlapped
quasi-arithmetic codes for distributed video coding,” inProc. Intl. Conf.
Image Processing, ICIP, San Antonio, USA, 2007.

[14] M. Grangetto, E. Magli, and G. Olmo, “Distributed arithmetic coding,”
IEEE Commun. Lett., vol. 11, pp. 883–885, Nov. 2007.

[15] M. Sartipi and F. Fekri, “Distributed source coding using short to
moderate length rate-compatible LDPC codes : The entire slepian-wolf
rate region,”IEEE Trans. Commun., vol. 56, no. 3, pp. 400–411, March
2008.

[16] J. Ha, J. Kim, D. Klinc, and S. McLaughlan, “Rate-compatible punctured
low-density parity- check codes with short block lengths,”IEEE Trans.
Inform. Theory, vol. 52, no. 2, pp. 728–738, Feb. 2006.

[17] S. Ben-Jamaa, C. Weidmann, and M. Kieffer, “Asymptoticerror-
correcting performance of joint source-channel schemes based on arith-
metic coding,” in Proc. MMSP, Victoria, Canada, October 2006, pp.
262–266.

[18] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,”IEEE Trans. Inform.
Theory, pp. 284–287, Mar. 1974.

[19] T. Guionnet and C. Guillemot, “Soft and joint source-channel decoding
of quasi-arithmetic codes,”EURASIP Journal on applied signal process-
ing, vol. 3, pp. 394–411, Mar. 2004.

[20] P. Howard and J. Vitter, “Practical implementations ofarithmetic cod-
ing,” Image and Text Compression, J.A. Storer, ed., Kluwer Academic
Publishers, Norwell,MA, pp. 85–112, 1992.

[21] J. Hagenauer, J. Barros, and A. Schaefer, “Lossless turbo source coding
with decremental redundancy,” inProc. Intl. Conf. Source and Channel
Coding, SCC, Erlangen, Germany, January 2004.

[22] D. Varodayan, A. Aaron, and B. Girod, “Rate adaptative codes for
distributed source coding,”IEEE Trans. Image Processing, vol. 86,
no. 11, pp. 3123–3130, Nov. 2006.

