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Abstract
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formation is first used independently to obtain confidence values that indicate the likelihood
that a specific person appears in a video shot. Finally, a post-classifier is applied to fuse audio
and visual confidence values. The system has been tested on several news sequences and the
results indicate that a significant improvement in the recognition rate can be achieved when
both modalities are used together.
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1 Introduction

Automatic machine recognition of people is a challenging problem which has been addressed by

many researchers due to its many different applications (see [1] for a list).

Recognition is usually achieved by using one or more biometric keys that identify a person

within a population. In most cases, the choice of the particular biometric deeply relies on the final

application. For instance, retinal scans and fingerprints have shown high recognition accuracy,

however their use is limited to the availability of cooperative individuals, which is not always

possible.

Although much attention has been placed on biometric development for security and physical

access applications, the recognition of people in video sequences for video indexing applications is

also an immediate need with significant commercial opportunity [2]. In this application only face

and voice biometrics are usually available. Recognition performance using these biometrics has

reached a relatively high success in applications where some control on the acquisition conditions is

possible, for instance with controlled pose and illumination settings for face recognition. However,

in uncontrolled environments with changes in pose and illumination, face recognition is still an open

problem, and it seems that this situation will still remain for some years on. A similar context is

also found when recognition is performed using voice-based biometric.

As mentioned before, a possibility to increase the accuracy of recognition systems is to use more

than one biometric. This is because degradations for each modality usually are uncorrelated.

Following the previous ideas, this paper presents a system that recognizes people in video

sequences combining audio and image information. More specifically we are interested in locating

shots where some particular person appears in the image while talking, so that both face and voice

biometrics can be used. Examples of these shots include taped footage of news anchors, and head

and shoulders sequences of people being interviewed. Notice that this type of shots usually contains

important and reusable information, and therefore they are important for indexing. Moreover

recording conditions for this type of shots are usually more controlled, making the recognition task

more accurate.

Recognition tasks have been traditionally grouped into identification and verification [1, 3, 4]

irrespectively of the specific biometric to be used. In identification the objective is to obtain the

identity of a test sample from a set of known possible identities. In verification an identity for the

test sample is proposed and the task entails accepting or rejecting this identity claim. Usually,
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during the identification task the test sample is compared with all possible identities and it is

assigned to the one with highest similarity. In the case of verification, the test sample is compared

to the claimed identity model and usually a threshold value is needed to make the decision. The use

of this threshold makes the verification task harder than the identification task, and this can explain

why most research on person recognition has concentrated on the identification task [4, 5, 6].

In this paper we will focus on the verification task. Thus, if person m is being searched, then,

for each test shot, the identity m will be claimed and the system will accept/reject this identity

claim. Following with the terminology used in verification systems, if person m was really in the

shot we say that it was a true claimant shot. On the other side, if person m was not in the shot

then we say that it was an impostor shot.

Figure 1 illustrates the approach used in this paper. As shown in the figure, audio and image

information are processed in parallel and two confidence values, that express the belief that person

m is in the shot, are extracted for each selected shot. This is done using two modules that use face

and voice biometrics. Finally, a fusion module is used to make the final decision based on the audio

and image confidence values. Notice that the previous approach can be applied to every shot within

a news sequence for instance. However, since we are interested in recognition in head and shoulders

shots, it seems reasonable to filter out as many shots as possible and concentrate recognition only

in shots where recognition is possible, before the overall system is applied. An example of a system

used to pre-select suitable shots for recognition in news sequences can be found in [7].

The rest of the paper is organized as follows. Section 2 and 3 describe how image and audio

confidences are extracted respectively. Then, Section 4 explains how these confidence values are

used to accept or reject the identity claim. Finally, some results and conclusions are presented in

Section 5.

2 Extracting face confidence

As shown in Figure 1 our approach to extract the face confidence is based on face recognition. Face

recognition has been an active research topic for more than one decade. Initially, face recognition

systems focused on still images, although, in recent years, face recognition in image sequences

has gained significant attention [1]. Image sequences offer the advantage of selecting frames more

suitable to the recognition task, although nearly all systems apply still-image face recognition

techniques to individual frames. A face tracking approach may also be used for image sequence
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face recognition. However, face tracking poses some extra problems: need to refine the tracking

results to obtain good candidates for recognition, and the computational load associated to the

tracking process itself. For these reasons, we have chosen a simpler approach that is based on

still-image face recognition applied to individual frames.

Still-image face recognition methods have been compared in different survey papers [1, 8]. The

basic conclusion obtained is that although all the algorithms have been successfully used for face

recognition, each of them have their own advantages and disadvantages. Thus the appropriate

scheme has to be chosen based on the final application. For instance, elastic graph matching

techniques [9], require large face resolutions (128 × 128). Other methods are better suited for

identification applications, such as Linear Discriminant Analysis (LDA) [10]. In other cases the

difficulty of training the face model limits the use of some algorithms as in the case of the Hidden

Markov Model (HMM) algorithms [11]. In any case, the comparison results presented in [4], over

twelve different face recognition techniques used for verification applications indicate that Elastic

Graph Matching, LDA and Principal Component Analysis (PCA) were on the top three, each

method showing different levels of performance on different subsets of images. In this paper, face

recognition is based on a variant of the PCA technique [12], also known as the self-eigenfaces

technique [13]. The self-eigenfaces technique is well suited for the video indexing applications

where many images of a specific person viewed from a similar perspective are available for training

purposes. Details about the self-eigenface approach are presented in Section 2.1.

Figure 2 illustrates the main blocks used in this paper to obtain the face confidence. The

input of the system is the shot where we want to recognize person m. Then, for each frame, still-

image face detection/recognition is applied. As mentioned in the previous section, any verification

task usually entails two steps: comparison against a suitable model and thresholding in order to

accept/reject the identity claim. The idea here is to skip the second step, so that no hard decisions

are taken at any point in this stage. The recognition results obtained for each frame are finally

combined to yield a single face confidence value per shot.

Traditionally, face detection and recognition have been treated as two separate problems, and it

is quite common to find many face recognition systems that assume that the face has been previously

manually extracted or detected with independent face detection systems. In our proposal, the key

objective of the face detection module is to provide good candidates for recognition. For this

reason the details of face recognition are explained first in Section 2.1 to better understand what
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type of face candidates are needed, and then, the algorithm used to extract these face candidates

is described in Section 2.2.

2.1 Face recognition using self-eigenfaces

PCA has been one of the most successful approaches used for face recognition. The PCA technique

has been mostly used for identification applications where usually just one frontal face is available

for each class [12].

The basic idea behind PCA analysis is to achieve dimensionality reduction by projecting the

face pattern onto a subspace of a much lower dimension than the number of points of the face

pattern itself. This subspace is spanned by a set of orthonormal vectors usually referred to as

eigenfaces and it is designed to optimally represent the distribution of face data in the RMS sense.

For each application the eigenfaces are obtained from the set of available training faces (usually

one face per person). Finally, identification is done by locating the image in the database whose

projection coefficients are closest to the projection coefficients of the test image.

In this paper, a variant of the PCA approach which is more suitable for applications where

many training faces per person are available is used [13]. The main difference is that independent

PCA is performed for each person using his/her available training faces. The result of this analysis

is a set of eigenfaces for each person, called self-eigenfaces. Therefore each person is modeled by

the set of parameters:

Fm = {xm
µ ,Vm} (1)

where xm
µ is the average face of person m and Vm is a matrix whose columns are the Km principal

self-eigenfaces vm
k of person m. To achieve the dimensionality reduction Km is much smaller than

the number of pixels of the face patterns. In our approach, the location of the eyes is used to

normalize the size of each training face. Figure 3.a presents some original views of a person and

Figure 3.b an example where the average face and the self-eigenfaces corresponding to the largest

eigenvalues of the same person are shown.

The test stage in the self-eigenface approach also differs from the original PCA approach. As

mentioned previously, in the original approach projection coefficients are used for classification. In

the self-eigenface approach each face candidate is projected and reconstructed using a particular

set of self-eigenfaces Fm. Finally, the reconstruction error is used to measure the confidence such

that the identity of the face candidate is m.
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Let x be a test face represented as a column vector, its projection coefficients using the self-

eigenfaces of person m can be obtained as:

ym = VT
m(x− xm

µ ) (2)

Using the projection coefficients ym the original test pattern can be approximated as:

x̃m = Vm.ym + xm
µ (3)

Once the test image has been reconstructed, the reconstruction error is evaluated as:

ε =
1

255

√√√√ 1
RC

RC∑
j=1

|x(j)− x̃m(j)|2 (4)

where j is the vector index, and R and C are the number of image rows and columns respectively.

The idea behind this method is that given a test face, a low reconstruction error ε (good fit)

is achieved when the self-eigenface set of the corresponding identity is used. Figure 4 illustrates

this idea where original and reconstructed test faces are shown. In both cases, the faces are

reconstructed using Equation 3 with the mean face and self-eigenfaces of Figure 3.b. It can be seen

that reconstruction error is smaller when the identity of self-eigenfaces matches the identity of the

test face.

The self-eigenface technique can be easily extended to video sequences by repeatedly applying

the face recognition to every frame and then, giving a global confidence value that person m appears

in the sequence. A practical way to obtain a global confidence measurement, can be done using

the median value: Let εi be the minimum reconstruction error for all the face candidates of frame

i. Then, we define:

FCm = median{ε0, ε1, ε2, . . . , εN − 1} (5)

as the shot-based confidence that the face of the person m appears in a particular shot. One

advantage of the median value compared to other global measurements, such as the mean value, is

that it is more robust to outliers.

If only visual information is available, simple thresholding of FCm can be used for verification.

In general, we can say that the self-eigenface approach works well as long as the image under

test is similar to the ensemble of images used in the calculation of the self-eigenfaces, because only

linear combinations of the self-eigenfaces are used to reconstruct the test face. This also implies
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that the facial features in both training and test faces have to be in the same locations, so that it

is possible to reconstruct them using linear combinations.

2.2 Face detection

One key point for any face recognition system is face detection. Face detection is also important in

other fields such as facial expression recognition and surveillance. For these reasons many different

approaches have been proposed in the recent years to address this problem (see [14] for a survey).

A common issue of many face detectors found in the literature is that no specific application is

proposed for the detected faces (although face detection itself might be an interesting application).

Therefore it can be the case of correct detected faces might not be useful for face recognition. For

this reason we prefer to design a simple face detection stage and let the face recognition stage be

part of detection stage. Another reason for using a simpler approach is that the objective is to

extract faces from head and shoulders sequences, which can be considered as an easy case for most

face detectors (frontal view in upright position). Notice that the face detection scheme proposed

below is not very adequate to detect face rotations or pose variations and will lead to some missing

faces in these circumstances. However, in this application, this is not a very important problem, as

the face recognition stage would not be able to recognize faces with strong pose variations either.

As in other approaches, our algorithm exhaustively examines all pixel locations at different

image resolutions using a fixed size window [15]. This multi-resolution step allows to deal with

changes in scale. The objective is to obtain a distance to a face model for every pixel and image

resolution obtaining a set of what we call distance images. Face candidates are extracted at the

local minima of the distance images.

As described in Section 2.1, if we want to recognize a face, the location of its facial features

must match those of the training faces. Therefore, the distance to the face model used in the face

detection stage is based on the location of facial features, so that good candidates for recognition can

be obtained. Figure 5 illustrates how facial features are extracted from a set of sample faces. First,

a zero mean Laplacian filter is applied in order to enhance face features, and then a morphological

erosion with a 3× 3 square structuring element is used to remove white areas from eyes and tooth.

Secondly, to eliminate non-useful features, an intensity thresholding is applied. The threshold is

set so that 20% of dark pixels are under the threshold. This setting stems from the observation that

facial features approximately occupy this area for frontal faces. The face model Fav used to obtain

the distance at each pixel was obtained by averaging 280 patterns as the ones shown in Figure 5.c.
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The obtained face model is shown in Figure 6. Notice that the facial features of all images used

to obtain the face model are located approximately in the same position as those used to obtain

the self-eigenfaces for each person and that a elliptical mask is applied to reduce background noise.

Let Wp be the pixels under the window at a pixel location p after intensity normalization and

thresholding (as in Figure 5.c) then the distance to the face model Fav is obtained as:

D(Fav,Wp) = ||Fav −Wp|| (6)

In order to reduce the computational burden, the distance D(Fav,Wp) is only computed if two

simple test are passed. The first test uses skin color to reduce the search of face candidates to

skin-colored areas. The second test aims to discard flat skin-colored areas. This is done analyzing

the histogram of the intensity values of the pixels under the window.

Compared to other face detection schemes, our approach yields a higher false alarm for a

similar detection rate [15]. This is explained for the simplicity of the distance D(Fav,Wp). It is

not uncommon to obtain 5-10 face candidates when just one frontal face is in the scene. However,

since the final goal is recognition and not detection, this is not a real drawback of our approach.

The advantage is that usually one of those face candidates will be very good for recognition (due

to the location of facial features), and the rest of wrong candidates will yield a high reconstruction

error after using Equation 4, therefore since the minimum value is taken to obtain εi in Equation 5

they will be discarded in the recognition stage. In some sense, the face detection stage uses the face

recognition stage to discard these erroneous face candidates avoiding the use of a more complex

classifier.

3 Extracting voice confidence

Person recognition techniques that use the voice as a biometric are usually referred to as speaker

recognition techniques. Note that the objective here is not to know what is being said (speech

recognition) but who says it. Speaker recognition techniques are frequently grouped into text-

dependent and text-independent. In the first case the spoken sentence in both training and testing

stages has to be the same. This requirement can be accomplished in some applications such us

security access, with the advantage of a higher recognition performance. However, in our application

no assumptions about the contents of the speech are made and, then, text-independent speaker

recognition techniques must be used.
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Before speaker recognition can be performed it is necessary to extract speaker dependent fea-

tures from the audio signal. Most of the features used for speaker recognition are obtained from

the speech spectrum. This is because the spectrum directly reflects the effect of the person’s vocal

track, which is the main physiological factor to distinguish the voice’s identity. Features extracted

from filter-banks are commonly used to characterize the speech spectrum, since they have been

found to be more robust to noise [16]. Therefore, cepstral coefficients derived from a mel-frequency

filter-bank are used in this paper to represent the speech spectrum. In particular, the first twelve

cepstral vector coefficients and their corresponding deltas extracted each 17 ms. using a 34 ms.

Hamming window are used. We also remove the silent frames and use cepstral mean subtraction

(CMS) [17] to reduce linear channel distortions.

Once speaker dependent features are extracted, classification is usually formulated as a classical

hypothesis test based on the log-likelihood ratio:

ACm = log
{

p(S/m)
p(S/BM)

}
(7)

where S is the set of speaker dependent features extracted from the audio signal and p(S/m) and

p(S/BM) are the conditional probability density functions of the person m and the background

BM respectively [18]. The background model characterizes the hypothesis that the audio was not

spoken by person m. The use of this background model is important to normalize the values given

by p(S/m). The value ACm indicates the confidence that the speech segment was spoken by person

m. As in the case of the face confidence, simple thresholding ACm can be used for classification

when only audio information is available.

Different models can be used to represent the probability density functions used in Eq. 7. For

instance Hidden Markov Models (HMMs) [19] have been successfully used in text-dependent speaker

recognition systems due to their ability to model temporal variations in the speech signal. However,

in text-independent speaker recognition, where no assumptions about temporal variations can be

made, Gaussian Mixture Models (GMMs) [20] are preferred. Notice that a GMM can be also

regarded as a degenerated HMM with just one state. The main reason why GMMs are preferred is

its ability to represent arbitrary densities, in this case of speaker dependent features.

During the training stage, GMM models are built for each person m using 2–3 min of clear

speech. The parameters of the GMM models are estimated using the Expectation Maximization

(EM) algorithm [21]. On the other hand, the background model is built from 1 hour of speech

recorded from a variety of speakers extracted from our video database [22]. To make the background
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model as universal as possible, special care on the composition of the speaker’s universe has to be

taken. This can be done by balancing as much as possible the number of male/female utterances

and different recording conditions.

After training, each GMM consists of a set of parameters that comprises the mean, covariance

matrix and mixture weight of each Gaussian component. This set of parameters for speaker m can

be written using the following notation:

Sm = {pm
i ,−→µ m

i ,Σm
i } i = 1, . . . ,M (8)

where M is the number of Gaussian mixtures used in the model.

Depending on the choice of the covariance matrices Σm
i , GMMs can adopt several forms. The

model can have one covariance matrix per Gaussian component (nodal covariance), one covariance

matrix for all Gaussian components in a speaker model (gran covariance), or a single covariance

matrix shared by all speakers models (global covariance). The covariance matrix can also be full or

diagonal. Among all these options, GMMs that use nodal diagonal covariance matrix have proved

to provide better identification results [23]. Similarly, the background model is built using GMMs.

However, in this case, the number of Gaussian mixtures is higher to represent a broader set of

possible acoustic classes. In this work, the background model uses 256 Gaussian components. This

value is based on a previous analysis presented in [20].

In the test stage we use ACm as a shot-based confidence measurement that the utterance was

spoken by m.

4 Combining audio and face confidences

Systems that combine different information sources such as visual or audio are commonly referred

to as multi-modal, where each modality corresponds to a different information source. Recently, the

research on many different areas such as video indexing and retrieval [24, 25], and video segmenta-

tion [26], is also focusing on developing multi-modal systems that aim to improve the performance

of each individual modality. An additional benefit of adopting a multi-modal approach is that

system design and implementation complexity can be reduced by using several and complimentary

modules instead of just one very sophisticated.

The techniques used to fuse different information sources can be broadly classified into pre-

mapping and post-mapping techniques [27]. In the first group information is commonly fused by

concatenating features from all modalities into a large feature vector, and then, a single classifier
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is used to perform the recognition task. Pre-mapping techniques have been mostly used in speech-

reading [28] and video segmentation [26], although pre-mapping techniques have also been used for

person recognition [29].

Post-mapping techniques combine information after features have been processed using a suit-

able classifier or expert for each modality. An expert is essentially a classifier that provides a

soft-decision or confidence value instead of a binary decision. Post-mapping techniques have two

main advantages. First, features from the different modalities do not need to be synchronized. Se-

cond, post-mapping schemes are more robust in situations where features from different modalities

are slightly correlated.

Post-mapping techniques that use experts instead of classifiers are usually preferred since they

preserve the information about the confidence on each modality. Exceptions to this rule of thumb

can be found in [30, 31].

Techniques used to combine confidence values from different experts include: weighted sum-

mation [32, 33, 34], weighted product [35] and post-classifier [6]. In this work we selected a post-

classifier approach to combine the face FCm and voice ACm confidences. The advantage of the

post-classifier option is that it is possible to combine confidence values from different experts, even

if their outputs fall in different ranges. This happens because post-classifiers directly map the input

values from the confidence space to the decision space. In our application a post-classifier allows a

direct combination of a face confidence in terms of a reconstruction error with a voice confidence

expressed as a likelihood ratio.

Figure 7 shows the scatter plot of the two-dimensional feature vectors Cm = (FCm, ACm), where

it can be clearly seen that true and false candidates are better separated in the two-dimensional

space. To that end, Bayesian post-classifiers are used in this paper [36]. Bayesian classifiers, are

based on the likelihood ratio of the conditional probability density functions (p.d.f) p(Cm|tc) and

p(Cm|im). Where (tc) and (im) stand for the true claimant and impostor classes respectively.

As in Section 3, the conditional p.d.f’s can be modeled using GMMs for their ability to model

arbitrary densities. Recognition results using different number of Gaussian Mixtures are presented

in Section 5.
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5 Recognition results

5.1 The Experimental Data Set

All the experiments described in this paper have been done using video data from the ViBE

database [22]. The ViBE database has been created in Purdue University and contains more

than 100 hours of copyright cleared MPEG-1 sequences, which were recorded from miscellaneous

television programs. The sequences were digitized at a rate of 1.5 Mbits/sec in SIF format (352×

240).

Recognition experiments were conducted in head and shoulders shots only. This was done to

avoid shots with nobody present and therefore easy to reject. The head and shoulders shots used

in the experiments come from 29 different news programs. All the shots within this set are at least

10 seconds long to obtain reliable voice confidences.

The number of different people that appear in the shots is 70, although only 10 people appear

in more than 20 different shots. We obtained the face and voice models of these people that appear

more frequently only. This was done for a practical reason, think that usually head and shoulders

shots in TV news stories do not last more than 15 seconds, and we need at least 2-3 minutes of

audio (8-12 shots/person) to train each speaker model and we also need more appearances (5-10

shots/person) for testing. Hence, the dataset was divided in two groups. One for training the face

and voice models, and another for testing.

The recognition experiments are made in the following way. For each test shot one of the ten

possible identities is proposed. If the proposed identity and that of the test shot match, we say

that the shot is a true claimant shot and in other case we say that it is an impostor. If the system

makes the right decision for a true claimant shot then we say that it is a true positive. On the other

hand, if the system makes the right decision when an impostor shot is tested, then we say that this

is a true negative. As mentioned in Section 1, a threshold is usually used in verification problems to

make the final decision. Depending on the application, it is possible to change the number of true

positives and negatives adjusting the threshold value. However, if we want to compare different

recognition systems, it is common to set the threshold to the point where the percentage of true

positives equals the percentage of true negatives. We call that point the Equal Correct Rate (ECR).
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5.2 Recognition results using a single modality

As mentioned at the end of Section 2.1 if either face or voice modalities are used, verification

can be done thresholding the available confidence value. This section contains recognition results

using only one modality, these results will be useful to compare the benefit of using a multi-modal

approach.

5.2.1 Visual recognition results

In Equation 1 we indicated that the face model Fm was made of the average face and the Km

main self-eigenfaces. As in the original PCA method, Km is set so that the self-eigenfaces retain a

certain percentage of the training set variance. Table 1 shows the number of self-eigenfaces for each

identity as the retained variance changes. It can be seen how model complexity increases with the

retained variance. The recognition results shown in Table 2 show that there is a trade off for the

retained variance (the best recognition results are obtained for a retained variance of approximately

90%). The idea is that the discrimination power gets reduced if too few self-eigenfaces (it is not

possible to reconstruct any test sample) or too many self-eigenfaces are used (all test samples yield

small reconstruction errors). Figure 8 shows the true positives and true negatives curves as the

threshold on FCm changes when a 90% of the variance is retained. The ECR point correspond to

the point where both curves intersect.

5.2.2 Audio recognition results

As shown in Equation 8, speaker dependent features Sm are modeled using GMMs. Each of the M

Gaussian components in a GMM can be regarded as an acoustic class. The number of components

M is a trade off between a coarse approximation and over-fitting of the probability density function,

for low and high values of M respectively. In this work we performed recognition results for different

values of M . The ECR results are presented in Table 2. It can be seen that the best results are

obtained for M = 32. A similar conclusion was obtained in a previous paper by Reynolds [23].

Figure 8 shows the true positives and true negatives curves as the threshold on SCm changes when

a 32 GMM is used. Again the ECR point corresponds to the intersection of both curves.

5.3 Audiovisual recognition results

In Section 1 it was explained that a multi-modal approach to the recognition problem can improve

recognition results if each modality contributes with new and complimentary information. A simple
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test to analyze how much information is introduced can be done studying the correlation between

the face and voice confidence values. To that end we split the confidence values in two different

sets; one for the true claimants and another for the impostor shots:

Stc ≡ {Cm = (FCm, SCm) | Cm is true claimant}
Sim ≡ {Cm = (FCm, SCm) | Cm is impostor} (9)

Then, for each set we obtained the correlation factors:

ρtc = corr(FCm, SCm) | Cm ∈ Stc

ρim = corr(FCm, SCm) | Cm ∈ Sim
(10)

yielding the following values: ρtc = 0.03 and ρim = 0.02. The previous results show that the

overlapping of information of both modalities is very small.

An important problem that we came across when obtaining the recognition results is the rela-

tively small amount of available data to train and test the post-classifiers. This is specially critical

for the true claimant samples. A possibility to train and evaluate the performance of the post-

classifiers is to use a m-fold cross-validation approach [36]. Using this approach, the training data

is split randomly in m subsets (in our experiments m = 5). Then, m different training and test

experiments are performed. In each experiment, one subset is used for testing and the rest are

used to train the post classifier. Then, the average performance of the m experiments is used as

an estimate of the post-classifier performance.

As indicated in Section 3 there are several options on the type of covariance matrices when

building GMMs. In this work only diagonal covariance matrices have been used to model GMMs.

This decision is based on the low correlation between face and voice confidences. Moreover, using

diagonal instead of full covariance matrices reduces the number of parameters allowing more reliable

estimates. Another issue when building GMMs is the number of Gaussian mixtures. Table 3 shows

the ECR results using different number of Gaussian mixtures. The table also presents another

result for the particular case where both probability density functions are modeled using normal

distributions with equal covariance matrix. This special case was used since it produces a linear

decision boundary [36]. The ECR results show that in all cases the multi-modal approach out-

performs the recognition results for each independent modality. Differences between the Bayesian

post-classifiers are not really significant, although a slightly better performance is reached for the

GMM-1 model. In this case the number of parameters to estimate is smaller, producing more reli-

able estimates. Another interesting point is that using equal diagonal covariance matrices for each

class (linear decision boundary), also produces a very good separation between true claimant and
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impostor classes despite its simplicity. In our opinion this is the best option for the post-classifier,

this opinion is founded on the fact that generalization is better for simpler classifiers.

Figures 9, show the decision boundaries for the previous Bayesian post-classifiers. It should be

mentioned that these decision boundaries have been obtained using all the available data. It can

be seen that differences between the decision boundaries when the number of Gaussian mixtures

is increased are not really important. Although it can be seen a tendency to over-fitting as the

number of mixtures grows. Figure 10 shows the decision boundaries obtained by using visual only,

audio only or audio-visual informations. In the figure is also clearly shown how true claimant and

impostor shots are better separated when both information sources are used.

6 Conclusions

This paper has presented a person recognition system that uses audio and visual information. The

approach used to fuse both information sources is based on a post-classifier that uses voice and

face confidences to recognize a specific person in a video shot. The multi-modal recognition results

clearly outperform those obtained using a single modality. One drawback of the proposed system is

that it can be fooled by dubbed footage. This is a common situation found in news programs when

people use foreign languages. A possible solution to this problem is to disable the audio modality

on those cases where we may expect a dubbed audio.

As future work, more modalities such as subtitles (when available) should be incorporated

into the proposed framework. Also, other face recognition techniques, more robust to changes in

pose and illumination, should be explored to extend the applications to more general environment

conditions.
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Six out of 200 training faces
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Figure 3: (a) Six out of 200 original training faces. (b)Average face and the first 6 self-eigenfaces
obtained with the 200 training faces.
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Figure 4: Example of face reconstruction using the 26 first self-eigenfaces of the person of Figure 3.a
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(a)

(b)

(c)

Figure 5: (a) Sample faces, (b) result of intensity normalization, (c) facial features after intensity
thresholding.

Figure 6: Result after averaging 280 face patterns as in Figure 5.c.

Figure 7: Scatter plot of the face and voice confidences.
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Figure 8: Recognition results using each modality separately.

Retained variance

85% 90% 95 %

ID Km

1 16 26 50
2 18 27 45
3 16 23 39
4 15 23 42
5 17 31 58
6 15 24 43
7 20 30 55
8 11 20 37
9 10 17 33
10 8 17 29

Table 1: This table shows the number of selected self-eigenfaces (Km) for different values of retained
variance for each modeled person.

Face recognition Speaker recognition
retained
variance

threshold on FCm ECR Num. of
Gauss. Mix

threshold on SCm ECR

85 % 0.097 92.2 % 16 0.37 88%
90 % 0.091 92.8 % 32 0.56 92%
95 % 0.081 91.5 % 64 0.87 86%

Table 2: Threshold and detection rates using only the face modality
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Type of cov. matrix Model ECR Threshold
Diagonal GMM-1 97.3 % -0.43
Diagonal GMM-2 97 % -0.51
Diagonal GMM-4 96.8 % -0.13

Diagonal and equal for both classes Normal dist. 97.1 % 0.6

Table 3: Recognition results using the Bayesian post-classifier.

(a) (b)

(c) (d)

Figure 9: Decision boundaries for the Bayesian post-classifier using: (a) normal distributions,
(b)GMM with one mixture, (c) GMM with two mixtures (d) GMM with 4 mixt. In the three
examples the covariance matrices are forced to be diagonal.
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Figure 10: Comparison between decision boundaries of face only, voice only and multimodal recog-
nition (using the classifier of Figure 9.a).
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