ViBE: A Compressed Video Database Structured for
Active Browsing and Search *

Cuneyt Taskiran*, Jau-Yuen Chen*, Alberto Albiolf,
Luis Torres*, Charles A. Bouman* and Edward J. Delp*
*School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-1285
{taskiran, bouman, ace}@ecn.purdue.edu
“Epson Palo Alto Laboratory
3145 Porter Drive, Palo Alto, CA 94304
jauyuen@erd.epson.com
"Departamento de Comunicaciones
Universidad Politécnica de Valencia, Spain
alalbiol@dcom.upv.es
tUniversidad Politécnica de Catalunya, Spain
luis@gps.tsc.upc.es

Corresponding Author:
Professor Edward J. Delp
School of Electrical and Computer Engineering
1285 Electrical Engineering Building
Purdue University West Lafayette, IN 47907-1285

Telephone: +1 765 494 1740
Fax: +1 765 494 0880

Email: ace@ecn.purdue.edu

Abstract

In this paper, we describe a unique new paradigm for video database management known as
ViBE (Video Indexing and Browsing Environment). ViBE is a browseable/searchable paradigm
for organizing video data containing a large number of sequences. The system first segments video
sequences into shots by using a new feature vector known as the Generalized Trace obtained from
the DC-sequence of the compressed data. Each video shot is then represented by a hierarchical
structure known as the shot tree. The shots are then classified into pseudo-semantic classes that
describe the shot content. Finally, the results are presented to the user in an active browsing
environment using a similarity pyramid data structure. The similarity pyramid allows the user
to view the video database at various levels of detail. The user can also define semantic classes
and reorganize the browsing environment based on relevance feedback. We describe how ViBE
performs on a database of MPEG sequences.

EDICS: 4-KEEP: Indexing, Searching, Retrieving, Query, and Archiving Databases

*Please address all correspondence relative to this manuscript to Professor Edward J. Delp.

1 Introduction

The proliferation of multimedia material, while offering unprecedented opportunities for users to
search and profit from available content, also has made it much harder for users to find the material
they are looking for in large collections. Depending on the specific information they are seeking,
users desire flexible and intuitive methods to search and browse multimedia libraries. However, the
cost of manually extracting the metadata to support such functionalities may be unrealistically high.
Therefore, over the last decade there has been a great interest in designing and building systems
that automatically analyze and index multimedia data and retrieve its relevant parts. Contrasted
with traditional text-based approaches to indexing and search, image and video libraries present
unique design challenges since visual information generally contains a large amount of information
at many conceptual levels which is hard to capture using keywords [1]. Although some frameworks
to define systematic methods for multimedia indexing exist [2], currently there is no accepted
universal set of features to describe multimedia information. The MPEG-7 standard [3] is aiming
to solve this problem by standardizing multimedia descriptors and description schemes. Proposals
for systems that use MPEG-7 terminology have started to appear that describe video program
description schemes and the devices that will make use of these schemes [4].

The indexing and browsing challenges are most pronounced for digital video libraries because
video is a visually information-rich spatio-temporal medium, where the temporal component is
essential in interpreting the video. Video data also has high data volumes, even when compressed,
which causes a computational burden. A number of systems have been proposed to solve the
digital video library management problem. These include the VideoQ system [5], which allows
region-based queries with motion information, the Virage video Engine [6], CueVideo from IBM [7]
which uses keywords obtained from speech recognition to search through video data, a home movie
library management system from Intel [8], Delft University’s DANCERS news retrieval system [9]
where image and audio data, and speech transcripts are used to divide news programs into report
segments and assign topics to each of these and the Fischlar system [10] developed by the Dublin
City University for indexing and browsing broadcast TV content. One of the largest efforts in video
indexing and access is the Informedia system [11] developed by Carnegie Mellon University which
reportedly has more than 2,000 hours of news and documentary programs.

The browsing components of most of these systems generally consist of presenting the user with

a series of keyframes extracted from consecutive video shots. The main drawback to this approach

to browser interface design is that it presents the user with a localized view of the whole database
rather than presenting a an overview of the entire database. For users who do not have a clear idea
of the content they are searching but would rather browse through the database this approach may
be disorienting and confusing. The hierarchical video database browsing system we propose in this
paper takes a different approach to browsing and aims to rapidly give the user a general idea about
the content stored in the database.

In this paper, we present an integrated system for managing large databases of video which
we call ViBE (video indexing and browsing environment) [12, 13]. The ViBE system introduces a
variety of novel algorithms and techniques for processing, representing, and managing video while
keeping the user in the loop. One of the most important objectives of this paper is to describe not
only how these techniques function, but also how they integrate together into a single system. We
maintain that the ViBE system, as presented in this paper, is useful and scalable within a domain-
specific video database application that includes indexing, browsing, and search functionalities.
Figure 1 illustrates the major components of the ViBE system.

Shot boundary detection is the first step in processing video data. Rather than thresholding
a video frame similarity feature, as was usually done in early work in this area, we pose the shot
boundary detection problem as a standard classification problem, in which a high dimensional fea-
ture vector is first extracted from each frame in the video sequence. These vectors are then analyzed
using a suitable classifier. In our technique, the feature vectors, which we call the generalized trace
(GT) [14], are extracted from compressed video. We then use a classifier based on a regression
tree [15] which is used to estimate the conditional probability of a shot boundary for each frame.
The regression tree is essential because it automatically selects the relevant information from the
GT and generates probabilities which can be directly used for shot boundary detection.

In order to capture the salient aspects of complex shots, we introduce the idea of a hierarchical
representation we call the shot tree which is a binary tree containing a set of representative frames
from the shot. The shot tree is formed by clustering the frames in a shot, hence it hierarchically
organizes frames into similar groups. The tree structure also allows important operations, such as
shot similarity comparisons, to be obtained efficiently using tree matching algorithms.

Ideally, one would like to query a video database using high-level semantic descriptions, such
as “young girl running” or “park scene”. Unfortunately, automatic labeling of such categories is

currently difficult. In order to overcome this difficulty, we adopt the use of pseudo-semantic classes

which are broadly defined semantic categories to bridge the gap between low-level features and
semantic labels. Examples of such labels include “face”, indicating that the shot contains a face,
and “indoor/outdoor”, among others. In ViBE, pseudo-semantic labels are expressed as a vector
with elements that take on values in [0, 1] depending on the confidence of the label. The vector
labels can then be incorporated into the search, browsing, and relevance feedback operations.

The active browsing environment provides a user interface that integrates together the results
of shot boundary detection, shot representation, and pseudo-semantic labeling. Our browsing
environment is based on a similarity pyramid data structure [16]. The similarity pyramid uses a tree
structure to organize the objects in the database for efficient access. We utilize relevance feedback
in the browsing environment, so that users can dynamically modify the database’s organization to
suit the desired task. Finally, we demonstrate the performance of ViBE using a database of MPEG
sequences.

The paper is organized as follows: In Section 2 we review some previous approaches to shot
boundary detection and describe our shot segmentation algorithm using the generalized trace fea-
ture vector and a regression tree classifier. Section 3 describes our approach to representation of
detected shots and illustrates how our proposed shot tree structure may be used to compute shot
similarity. In Section 4 pseudo-semantic shot features are introduced and we describe in detail
how we extract the “face” shot feature. In Section 5 we describe the active hierarchical browsing
environment and examine efficient methods to perform browsing and search operations in this en-
vironment. Finally, experimental results of our video database browsing system are presented in

Section 6.

2 Shot Boundary Detection

A shot, which is the basic component of a video sequence, may be defined as a group of frames
that has continuity in some general conceptual or visual sense. Often, a shot is composed of frames
which depict the same physical scene, signify a single camera operation, or contain a distinct
event or action. Most systems for indexing, characterization, and understanding of video rely
on the identification of individual shots; hence, usually the first task in processing video data is
segmenting shots by detecting shot boundaries, thereby breaking the video sequence into distinct
“semantic chunks”. In order to exploit the hierarchical nature of video the detected shots may then

be clustered to obtain scenes, which form the next semantic level for video.

The number of possible types of shot boundaries is large. However, in practice almost all
shot boundaries fall into one of the following three categories: cuts, fades, and dissolves. Among
these, cuts, which are abrupt changes from one shot to another between two frames, form the
overwhelming majority; therefore, in this paper we shall concentrate on the detection of cuts. The

generalization of our technique to other types of shot boundaries may be found in [13].
2.1 Previous Work

Since shot boundary detection is a fundamental component of video processing, considerable work
has been done in the last decade in this topic. The general technique is to derive one or more low-
level features from video frames, derive a dissimilarity value between frames using these features,
and flag a shot transition whenever this value shows some nontypical behavior. The following is a
brief list of some of the previous techniques that have been used in the literature. More references
may be found in the survey and comparison papers [17, 18, 19, 20, 21].

Pixel-wise frame differences [22, 23|, where the differences in intensity or color values of cor-
responding pixels in two successive frames are used, is one of the oldest methods. Block-based
versions of this technique [24] have also been proposed to make the comparison more robust to
camera and object motion. Another robust method is to compare intensity or color histograms
of successive frames to detect cuts [25]. Various distance measures between histograms have been
investigated [26] but the L; norm seems to be the most useful. Similarity features derived from
histograms for frames within a window may be clustered to detect outlier values which correspond
to cuts [27].

Processing in compressed domain offers many advantages and many methods have been pro-
posed to detect cuts for MPEG compressed sequences. These methods generally try to exploit
the extra information available in the MPEG stream such as the DCT coefficients [28, 29] and
macroblock types [30, 31].

A different approach to shot boundary detection is to pursue a model-driven approach where
algorithms are based on mathematical models of video and shot boundaries. Methods based on mod-
eling interframe pixel differences [32], shot lengths [33], and interesting events in soundtracks [34]
have been proposed. Hidden Markov models, built using information from both images and audio,
have also been used successfully to detect shots [35, 36].

Detecting and identifying shot transitions by processing a single frame dissimilarity feature has

a number of problems: First, it is difficult to determine a single feature that could be used to

accurately detect shot boundaries in a wide variety of situations. Second, for techniques where a
global threshold is used, there is the problem of determining the optimal value of the threshold to

be used, since this value may vary considerably from sequence to sequence.
2.2 The Generalized Trace

In ViBE, we perform shot boundary detection by first extracting from the given compressed video
sequence the “DC sequence”, which is formed from the DC coeflicients of 8x8 DCT blocks of the
MPEG coded video frames. While the DCT DC coefficients are directly available for I frames, they
must be estimated for P and B frames. We have used the method described in [37] for estimating
these DC coefficients.

The next step is the extraction of a set of features from each DC frame. These features form
a feature vector that we call the generalized trace (GT) [14]. The GT is then used in a binary
regression tree to determine the probability estimate that a given frame is the start of a new shot
These probabilities can then be used to detect cut locations.

The GT for frame i of a video sequence is denoted by g; and its j*» component by gi,j- For the

experiments described in this paper, the GT consists of the following features:

9i.1—3 - Histogram intersection of frames ¢ and ¢ + 1 for the Y, U, and V' color components

64
1 Y
g = g 2 M)~ HEA) M
uv
90 = 2MQDH ~ 1)

where M7 and Ms are the number of luminance and chrominance blocks, respectively. In our
case these have the values M7 = 44 x 30 = 1320 and M5 = 330.

9i.4—6 - Standard deviation of the Y, U, and V' color components for frame ¢

4 = L Y _ Y2
S)
1
k1

where ,ulY, ,u?, and ,ulV are the mean values for the luminance and chrominance blocks over

a frame, respectively.
9i.7—9 - Number of intracoded, forward predicted, and backward predicted macroblocks in frame

1, respectively.

gi10—12 - Boolean features which identify the frame type {I, P, or B} for frame i.

The last three features are required because the information contained in the GT must be
interpreted differently for different types of frames in the MPEG sequence. For example, P frames
contain no backward predicted macroblocks so g; 9 will identically be zero for these types of frames.
Similarly, the number of intracoded macroblocks per frame, g; 7, should be interpreted differently

for I, P, and B frames.
2.3 Binary Regression Tree

We use the GT of a video sequence and a binary regression tree [15] to estimate the conditional
probability that a given frame from the sequence belongs to a shot transition. We chose to use
the specific regression tree algorithm described in this section, rather than another decision tree
classification algorithm, because we have found this algorithm to be robust and efficient in other
applications [38, 39]. Furthermore, the posterior probabilities generated by the tree may be used
for other purposes. Regression trees are used when learning a relation between a set of features
and a continuous-valued output variable, i.e., to implement a function of the form y; = f(g;). An
improvement over the CART [15] method of building regression trees was proposed in [40] where
the data set is divided into two roughly equal sets. One set is used to grow a large tree that overfits
the data. Then the other data set is used to prune the tree back to maximize some desirability
criteria. This procedure is then iterated, successively interchanging the roles of the growing and
pruning data sets until convergence.

The regression tree used in ViBE is a variation of the above technique. The difference is that
the training and pruning step is used only once since we have found that the tree obtained after one
iteration is adequate in classification accuracy. The training process uses two sequences of nearly
equal size with known shot boundary locations, which we refer to as ground truth sequences. In
the ground truth sequences frame i is labeled as 1 if there is a cut between frames ¢ and ¢ + 1 and
0 otherwise. One ground truth sequence is used to build a large tree which overfits the data. The
tree obtained is then pruned in a bottom-up fashion using the second ground truth sequence where
we remove nodes whose deletion decreases the classification error.

The main advantage of the GT /regression tree method is that it lets us collectively use nominal
features together with real-valued features. Note that the last three features of the GT feature

vector jointly specify the type of the frame being checked for a shot boundary. Therefore, these

features are nominal, that is, there is no natural distance measure defined between them. Authors
who have applied MPEG macroblock type information to the shot boundary task [30, 31] have used
ad hoc rule-based systems that deal with different kinds of frame types separately. On the other
hand, authors who have used color histogram and related techniques do not usually incorporate the
additional information contained in the MPEG macroblock types. Our GT /regression tree approach
enables us to methodically combine real-valued and nominal valued features in our feature vector
and collectively use the information provided by them.

The GT/regression tree method also offers some other advantages: the output of the regres-
sion tree is normalized in the range [0, 1] and approximates the probability that the frame under
question belongs to a shot transition, which allows consistent and meaningful thresholding for dif-
ferent program types. Other thresholding methods may need different types of theresholds for
different program types. Furthermore, the method is highly extensible. New features can easily be

incorporated into the existing system.
2.3.1 Detection of Cuts

A schematic diagram of the steps in cut detection is shown in Figure 2. To train the regression tree,
we use known cut locations in the ground truth sequences and ignore gradual transitions. After
the tree has been trained using two ground truth sequences, it is used to process the GT from the
sequence whose cuts are to be detected. In order to make the detection more robust, instead of
using the feature vectors derived from each frame in the regression tree classifier, we combine the
feature vectors from a window of frames centered at the frame we want to classify, and use this
agglomerate feature vector as the input to the regression tree classifier. Therefore, to detect if a
cut has occurred between frames ¢ and ¢ + 1 we place a window of length 2W 4 1 frames centered
around frame ¢ and the GT vectors for all the frames in this window are concatenated into one
large feature vector. These agglomerate vectors are then used by the regression tree which provides

a piecewise linear approximation to the conditional mean, i.e.,

vi ~ Elog |Gi-w - & Bitw] (3)

where «; is the cut indicator function defined as

o — 1 if a cut occurs between frames ¢ and 7 + 1
¢ 0 otherwise

and y; is the output of the regression tree for frame ¢. The output y; can be interpreted to be the

probability of a cut occurring between frames ¢ and ¢ + 1 [15].

Candidate cut locations are then determined by thresholding the output of the regression tree;
if y; > 7, we decide that there is a cut between frames ¢ and ¢ 4+ 1. This approach is more robust
than thresholding the value of a frame similarity feature, because the classifier chooses the best
features from the GT and the threshold is not dependent on the specific video sequence.

The detected candidate cut locations are then post-processed to remove cuts that are too close
together. In the experiments described in Section 6.2, if two candidate cut locations are closer than

10 frames, the candidate cut with a smaller value of y; is deleted.

3 Shot Representation

The shots that are obtained at the completion of the temporal segmentation step are processed
to obtain a representation for each shot. This representation is both used in computing similarity
between shots for purposes of search and database reorganization, and in providing information for
users to browse the database rapidly and efficiently. The representation used in ViBE includes a
tree of representative frames extracted from the shot, the beginning and end frame numbers, the
unique sequence number of the sequence the shot belongs to, and a motion histogram to quantify
the motion content of the shot.

One of the most common ways to represent and visualize video shots is to extract one or more
frames from each shot and use these as an abstract representation of the shot. These frames are
known as representative frames or keyframes which may be used in a table of contents representation
for video [4]. For shots with slow changing content, one keyframe per shot is adequate. When shots
contain semantic changes or fast motion, however, more than one keyframe per shot is required.

The simplest method for keyframe selection is to pick from every shot one or more frames in
prescribed locations, e.g., the first frame of the shot. This method will not generate a faithful
representation of the shot for most video content. The most common approach is to cluster frames
from a shot based on low level properties such as color and texture, and choosing the frames
closest to cluster centroids as keyframes [27, 41, 42, 43]. The features that have been used in
clustering include 2D color histograms of frames [42, 41] and color histograms averaged over the
whole shot [27]. In ViBE we obtain the keyframes for a shot using a tree representation as described

in the next section.

3.1 The Shot Tree Representation

This section describes a novel way to represent a shot based on a tree structure, which we call the
shot tree, formed by clustering the frames in a shot. This tree structure allows important operations,
such as shot similarity comparisons, to be obtained efficiently using tree matching algorithms. A
typical shot tree is shown in Figure 3a. The frames in the shot are organized by the tree in such
a way that the root node is the most “representative” frame in the shot. As one progresses down
the tree, frames are organized into similarity groups.

The number of levels considered for the tree depends on the application. For example, if one
wants to categorize the shot by one frame, the root node is used. If more detail is desired, additional
levels may be used. For browsing, it is generally sufficient to use the root node as the keyframe;
for shot similarity measurement and classification in the browsing environment, two or three levels
of the tree can be used, as shown in Figure 3a.

The shot tree may be obtained by employing either top-down or bottom-up (agglomerative)
clustering of the shot’s frames. While top-down clustering is fast, it tends to produce poor clusters at
lower levels of the tree. This is due to the fact that once an image is placed in an undesirable cluster,
it is constrained to remain in that branch of the tree. In this paper, the shot tree representations
are obtained through agglomerative clustering which we describe next.

To build the shot tree for a given shot, we first extract a high dimensional feature vector con-
taining color, texture and edge histogram features from each DC frame in the shot. We use exactly
the same features described in detail in [44]. In particular we use color histograms, texture features
formed by histogramming the magnitude of the local image gradient of each color component, and
edge features formed by thresholding the edge gradient and then computing the angle of the edge
for all points that exceed a certain threshold. We denote the feature vector for frame j by f;. Let
¢; be the set of all frames in cluster i, and let n; be the number of frames in ¢;. Each element of
the proximity matrix [d;;] is then defined as the distance between clusters ¢; and ¢;. Let the given
shot contain frames fj,j = 1--- N. Initially, the element d;; is set equal to the L; distance between
feature vectors f; and f;, that is, each frame is placed in a separate cluster. Then, each iteration
of agglomerative clustering combines the two clusters, ¢; and ¢j, with the minimum distance. The
new cluster formed by joining ¢; and c¢; is denoted by ¢, and the distances from ¢, to each of the
remaining clusters are updated. In ViBE, we use Ward’s clustering algorithm, also known as the

minimum variance method [45], where the distances between the newly formed cluster, k, and all

the other clusters, h # k are updated according to the rule

n; + np n; + np np

dpr = hi + hi —
n; +nj +ny ' n; +n; +ny J n; +nj + np

dij (4)

This pairwise clustering generates a binary tree structure which is used as the representation
for the shot. Figure 3a illustrates such a representation for a shot from an action sequence. In this
example, the shot contains significant changes which can not be captured by a single keyframe;
hence the tree structure can better represent the diverse aspects of the shot. The tree structure
hierarchically organizes frames into similarity groups, therefore allowing automatic detection of

subgroups inside a shot.
3.2 The Motion Histogram and Pseudo-Semantic Representations

In order to quantify the motion content of a shot, we use the motion histogram derived from motion
vectors of macroblocks of the frames. For the k** P or B frame in the shot, we first compute, the

motion feature
my = (# forward MB) + (# backward MB) + 2(# forward-backward MB) (5)

Then we obtain the histogram h;; of the values my, for all the frames k in the shot s;;.

A very important part of the shot representation is based on the shot pseudo-semantic labels
we will discuss in Section 4. For each shot, we define a label vector, p;;, where each element of the
vector takes on continuous values in the range [0, 1], indicating the confidence level of assigning the

corresponding pseudo-semantic label to the shot.
3.3 Shot Similarity

Determining shot similarity is important for searching and reorganizing the video database. Meth-
ods have been proposed that use a version of histogram intersection accumulated for the whole
shot [46], and color, texture, and motion features derived from keyframes [47]. In order to define
a shot distance measure that is both robust and comparable to human notions of similarity as
much as possible we use a weighted sum of distances which depend on the shot tree, the temporal
information, the motion information, and the pseudo-semantic shot labels.

Let S; be the unique sequence number in the database and s;; be 4t shot in sequence S;. Then

the distance between two shots is defined as

D(sij,561) = Dst(845, 8k1) + D1 (545, S1) + Dar(sij, sw) + Dps(Sijs Ski) (6)

10

where Dgr, Dr, Dys, and Dpg are the shot tree, temporal, motion, and pseudo-semantic distance
components which are defined below.

The shot tree distance, Dsr(sij, Ski), is measured by obtaining the distance between the two
corresponding shot trees as illustrated in Figure 3b. Since the shot trees are obtained by clustering
all the frames from a given shot, in general they will have many levels. For the purposes of shot
similarity calculations, we only use the first three levels of each shot tree This means that each shot
is represented by a tree with 7 nodes, as illustrated in Figure 3b. Each node, ¢, of the shot tree is
associated with a cluster of frames from the shot which form the children of . We also associate
each node with a feature vector, z;, which is the average of the feature vectors of the frames in
the cluster associated with ¢. The distance between two tree nodes is taken to be the L; distance
between the feature vectors associated with them. The distance between two shot trees is then
given by the weighted sum of the distances between nodes using the best mapping between the
shot trees. The best mapping may be found by simply checking the 8 distinct mappings between
the two trees.

Similar to [48], we define the temporal distance between shots s;; and sj; as the following

D (N) . KSeq + KShota) ' if 4 7& k (7)
PP Kspor(min(g, e PghP=eal) 4 min(y,), if i = k

where b;; and e;; are the beginning and end frame of shot numbers for s;;. Here we assume that
if two shots are farther apart than T frames or T shots, we will not consider them similar in a
temporal sense. We have used the values Ty = 3000 and T = 30. The constants Kgeq and Kgpor
can be used to control the relative importance of shot and sequence matching in the overall distance
function.

The motion distance between shots s;; and sy, is defined to be the L; norm of the difference

between their motion histograms
D (835, k1) = Kntotion||hij — hygl|1 (8)

The constant Kpsotion controls the weighting of this component. Similarly, the pseudo-semantic

distance is defined as the L1 norm of the difference of the shot pseudo-semantic feature vectors as
Dg(sij, sk1) = Ksemanticl|Pij — Prill1 9)

We shall describe how these distance measures are used for browsing in Section 5.

11

4 Pseudo-Semantic Labeling of Shots

Users often desire to search a multimedia library by issuing queries in terms of keywords describing
events, objects, and locations such as “young girl running”, “blue dress”, and “park scene”. Ideally,
such content labels might provide the most useful descriptions for indexing and searching video
libraries. Currently, however, automatic extraction of such high-level semantic features is not
feasible. On the other hand, if the search is based on indexes that are semantically too primitive,
such as low-level motion and color features, not only the user may be frustrated by results that
seem to be totally irrelevant to the query, but the searching and browsing process will not be
intuitive [49]. This is the semantic gap problem which is central in multimedia retrieval. It is
caused by the discrepancy between the user’s conceptual model of the data and the capabilities of
current state of the art in data analysis [1].

Various approaches have been proposed to process low-level features to obtain higher level labels,
hence bridging the semantic gap to some degree. In [50] low-level features such as color, texture,
and motion blobs are extracted from video and are classified using a neural network which are then
processed using a domain-specific inference process. Binary random labels, which the authors call
“multijects”, are introduced in [51]. These labels are derived using Gaussian mixture models and
hidden Markov models which process features extracted from dominant regions in frames. Bayesian
networks are used to model the interactions between different multijects.

In ViBE we use a number of shot labels, which we call pseudo-semantic labels, to solve the
semantic gap problem in searching and browsing. Since pseudo-semantic labels are generally asso-
ciated with some level of uncertainty, each label is assumed to be a continuous value in [0, 1] where
1 indicates that the shot has the associated property with high confidence, and 0 indicates that
it does not. We are investigating several pseudo-semantic labels including labels such as “face”,
“indoor /outdoor”, and “high action”. In this paper we will only describe our work on the “face”
label. Representative methods which attempt to derive a “indoor/outdoor” label from images in-
clude [52] where shots are classified as interior or exterior based on the variation of luminance
caused by natural and artificial lighting, [53] where color, texture, and DCT coefficient features
are utilized to perform a similar task, and [54] where a Bayesian approach was taken using edge
and color features where the class-conditional distributions of features are estimated using vector
quantization.

The task of pseudo-semantic labeling is greatly reduced by the shot tree representation described

12

in Section 3. For the work presented in this paper, we only label the frame corresponding to the
root node for each shot tree. More generally, children of the root node could also be labeled and
a voting procedure could be used to determine the shot label. Since the resolution of the DC
frames is not adequate to accurately derive most pseudo-semantic labels, the root nodes of the shot
trees are extracted from the MPEG stream and are decompressed. Note however, that these this
decompression is performed for only a very small percentage of all frames in a video sequence The
goal here is to detect whether a frame in the sequence contains a face. Derivation of other labels
follows a similar process.

Different approaches have been developed in recent years for the face detection problem. Face
detection can be performed either in the compressed or spatial domain. Some of the most represen-
tative methods in the spatial domain include shape-feature approaches [55], neural networks [56],
and template matching [57]. These methods have tended to focus on still gray scale images. While
they report good performance, they are often computationally expensive. This is especially true of
template matching and neural network approaches, since they require processing for each possible
position and scaling of the image. Also, the results may be excessively sensitive to the rotation
and pose of the face. Recently, a number of authors have used color and shape as important cues
for face detection. In [58, 59] both color and spatial information are exploited to detect segmented
regions corresponding to faces.

Compressed domain face detection techniques have the main advantage of a lower computational
load when dealing with compressed video sequences, since it is not necessary to fully decode the
frames to perform the detection. This is usually accomplished at the expense of lower performance.
One of the most representative compressed domain techniques is [60] where the skin color and
the energy distribution of the DCT coefficients were proposed as the basis to detect a face. More
recently, an improvement to the previous technique was proposed in [61] where a spatial domain
technique [62] was adapted to work directly in DCT domain. The following sections present the

details of our approach for determining the “face” label for a frame.

4.1 Derivation of the Face Label

Our method is designed to be robust for variations that can occur in face illumination, shape, color,
pose, and orientation. To achieve this goal, our method integrates a priori information regarding
face color, shape, position, and texture to identify the regions which are most likely to contain a

face. It does this in a computationally efficient way which avoids explicit pattern matching.

13

Figure 4 illustrates the processing steps that we use to obtain the face label for a given frame.
Under normal illumination conditions skin colors occupy a small portion of the YCpCR color space
[60, 63]. The first step is to use this property to segment regions of the image which potentially
correspond to face regions. Once the pixels of interest are identified, unsupervised segmentation is
used to separate these pixels into smaller regions which are homogeneous in color. This is important
because the skin detection will produce nonhomogeneous regions often containing more than a
single object, e.g. skin colored materials may be erroneously included in the skin detection. These
undesired regions are separated from true faces using the subsequent unsupervised segmentation
step. The next step extracts regions using connected components analysis. For each connected
component, a set of features is extracted which characterizes the region in terms of its color and
shape. The final step is to label face regions. Face areas will often be divided up into two or more
regions in the unsupervised segmentation process. Therefore, to improve detection accuracy, we
use a pairwise steepest descent method in which all pairs of merged regions are considered to find
the merged region which best fits the face hypothesis. This pairwise merging process is recursively

performed and results in a single composite region.
4.2 Skin Detection and Unsupervised Segmentation

Let x be the chrominance vector of a pixel in the CgCR space. The decision rule to classify a pixel

into the skin class, Hy, or the non-skin class, Hy is given by

A(x) = % zz A (10)

where p(x|Hy) and p(x|H;) are the conditional probability density functions given the classes Hy
and H,, respectively, and A is a suitable threshold chosen to satisfy the constraint of a fixed false
alarm using the Neyman-Pearson test. We estimate p(x|Hy) and p(x|H;) using the normalized
histograms obtained from more than 200 images which were manually segmented into skin and
non-skin classes. In order to achieve a 90% detection rate, a value of A = 2.8 was chosen yielding
a 20.4% false alarm rate. Figure 5b shows an example where the pixels classified as non-skin are
set to black. It can be seen that in addition to face pixels, many objects in the background with
skin-like colors are also selected.

Once the pixels of interest are identified, unsupervised segmentation is used to separate these
pixels into smaller regions which are homogeneous in color. The objective of this step is to separate

spurious regions from the true face areas. We use a novel approach for the unsupervised segmenta-

14

tion stage using the watershed algorithm [64] to cluster the skin detected pixels in the color space.
Figure 5c shows the results of the unsupervised segmentation using the regions found in Figure 5b.

The algorithm is able to successfully separate the face region from the background.
4.3 Region Extraction and Hierarchical Region Labeling

The next step is to extract connected regions and feature vectors that characterize those regions.
Let ; be the i*" region of pixels, and let x, be a color pixel in YUV coordinates at position r € €);.
Here r € ; is assumed to be a two dimensional column vector r = [rq, rg]t where r1 and r9 index
the row and column of the pixel. For each region, we extract a state vector containing color and
shape features, defined by w; = [N;, %X;,7;, 4;, R, max;, min;]’, where N; is the number of pixels
in the region, max; and min; are the corner coordinates of the bounding box of the region, and

the other features are defined by

X, = NLZ Z Xey Vi = Diag NLZ Z (xr - ii)(xr - ii)t
I‘EQZ' I‘EQZ'
(11)
B = N% ZI‘, R, = N% Z(Y—Hi)(r—lh‘)t
reQ; reQ;

where =y, is a vector containing the variance for each of the Y, U, and V' color components. An
important property of the state vector is that it can be easily updated recursively for merged
regions.

From the state vectors u;, we obtain a feature vector v; which contains the specific features that
we use for labeling regions. The elements of v; are X;, 7;, u;, the area of the bounding box derived
from max; and min; and normalized by N;, and three more features obtained from the eigenvalues
and eigenvectors of R;. Let A1 > Ao be the two eigenvalues of R; with corresponding eigenvectors
e; and ey. Then the three remaining features are chosen to be v/A1 o /N, the orientation of eq,
and Ag/)\1.

A multivariate Gaussian distribution is used to model the behavior of v; for face areas. Let v
and X, be the mean and covariance of the vectors v; for regions corresponding to face areas. Then

the distance between v; and the mean behavior for a face region is given by
C,L' = (V,L' - V)tZ}_l(vi - _f) (12)
The smaller the value of C; the greater the likelihood that the region is a face area. In our

15

experiments, v and 3, are extracted as the sample statistics from a set of 100 manually segmented
frames, each containing at least one face.

As discussed earlier, the unsupervised segmentation is likely to partition face areas into more
than one connected region. Therefore, we must merge regions to form a new region which best
matches the behavior expected for face areas. We do this by searching each pairwise merging of
regions to find a new region which minimizes the distance given in Equation 12. We first form a
distance matrix C defined by

Cij = (vij = V)'Z, (vij — V) (13)

where v; ; is the feature vector computed by merging regions 2; and €2;. We then search for the

minimum entry of the matrix, Cj«;+ = min; j)cp Cij, where the set P is defined by

i,5)
P = {(Z,]) : Cij < Cy and Cij < ij}

and merge the two regions €2;« and)+, updating the entries of C. The restriction to the set P
insures that the minimum occurs between a pair of distinct regions which, when merged, will match
the face hypothesis better then any existing individual region. This process of merging is repeated
until the set P is empty. Figure 6 illustrates this recursive merging process. Each node represents
a region of the image with the internal nodes representing regions that result from merging. The
merging process terminates in a set of nodes, in this example nodes 9, 14, 15, and 16.

Once the above procedure terminates, any of the remaining nodes with less then 600 pixels are
removed. The face label for the frame is then computed using the region that best fits the face

hypothesis by the equation:

c* *
p= 1- Tface ¢ S Tface (14)
0 c* > Tface

where C* = min; C; and 7 indexes the remaining nodes. We have used the value 744 = 40 in our
experiments. Notice that p € [0, 1] is larger if the frame is more likely to contain a face, and smaller
if it is less likely. Figure 5d shows the region which best fits the face behavior after the merging

process.

5 The ViBE Active Browsing Environment

Many approaches for content-based management of video databases have focused on query-by-

example methods [65] in which an example shot is presented and the database is searched for shots

16

with similar content. However, query-by-example techniques tend to quickly converge to a small
set of shots that may not be of interest to the user.

In previous work [16, 44], we introduced the similarity pyramid as a structure for organizing
and browsing large image databases. The similarity pyramid uses a tree structure to organize
the shots in the database for efficient access. To construct these trees, we apply a bottom-up or
agglomerative clustering method because our experiences have shown that bottom-up methods tend
to yield better results [16, 44].

In ViBE, we adapt this browsing approach to the problem of video databases [12]. The similarity
pyramid is organized using the shot distance measure given in Equation 6. Our distance measure
allows weights to be adjusted which control the relative importance of color, edges, motion, temporal
position, and pseudo-semantic labels. Exploiting this flexibility, the ViBE browsing environment
allows dynamic reorganization based on the user’s needs. For example, the database may be
organized to group together shots from the same sequence, or from similar times, or containing
similar content. In order to achieve this, the browsing environment is designed to allow user
feedback. This feedback can be through the direct selection of parameters that control the relative
importance of sequence number, time, content, and labeling in the distance measure. However, it
can also be through relevance feedback mechanisms provided in the user interface of the browsing
environment [66]. While a number of techniques have used relevance feedback in content-based
image retrieval [67, 68, 69], we believe that the use of relevance feedback for browsing is a very

different problem which requires a fundamentally different approach.
5.1 Similarity Pyramids for Video Browsing

The structure of a similarity pyramid is illustrated in Figure 7. The similarity pyramid organizes
large video databases into a three dimensional pyramid structure. Each level of the similarity
pyramid contains clusters of similar shots organized on a 2-D grid. As users move down the
pyramid, the clusters become smaller, with the bottom level of the pyramid containing individual
shots. Each cluster of the pyramid is represented by a single key frame chosen from the cluster; so
as the user moves through the pyramid they have a sense of database content at various scales. In
addition, users can pan across at a single level of the pyramid to see shots or shot clusters that are
similar.

The similarity pyramid is created by first hierarchically clustering the shots, reorganizing them

into a quad-tree structure, and then mapping the quad-tree’s clusters onto the 2-D grid at each

17

level of the pyramid. The shots are clustered using the distance measure given in Equation 6 and
an agglomerative method similar to the general algorithm described in Section 3.1. However, we
modify the clustering method to exploit the sparse nature of the proximity matrix. For a database
with N shots, we only compute the distance between each shot and its M closest matches, and
then use a clustering technique similar to the flexible method developed in [70]. The result of this
clustering is a binary tree which is subsequently converted to a quad-tree, and then remapped to

the pyramid structure in a way which best preserves the organization of the database [71].

5.2 Browsing Interface

Figure 8 shows the browsing environment presented to the user. It consists of three blocks: the
display space on the left, which is used to browse through keyframes from shots in the database, the
relevance space on the right where the set of relevant shots as judged by the user, which we call the
relevance set, are displayed and the query space in the middle where users access various querying
functionalities. The grid representation of keyframes extracted from shots is a very efficient method
for the user to get a quick overview of the material in the database and have been used in other video
database management interfaces [8]. For a large database, even the upper levels of the similarity
pyramid will be too large to display entirely in the display space. Therefore, the user can move
along the horizontal or vertical directions in a panning motion to search for shot clusters of interest.
If a specific cluster appears to be of interest, then the user can choose to move a level deeper in the
pyramid by clicking on the cluster using the mouse. The next level of the pyramid is then presented
with the corresponding group of four children clusters centered in the view. Alternatively, the user
may desire to backtrack to a higher level of the pyramid. In this case, the previous level of the
pyramid is presented with proper centering.

The relevance set is a set of shots that the users deem to be interesting and select as they move
through the pyramid. Shots may be incrementally added or removed from the relevance set at any
time during the browsing process. For browsing, the user’s objective may be to locate all shots
from a desired class for example anchorperson shots. In this case, the relevance set may contain
dissimilar groupings of shots that represent the variations that can occur among shots in the class.
As the user browses through the database, the relevance set also serves as a clipboard which stores
all the shots of interest to the user. Once a set of relevant shots has been selected, it may be
associated with a semantic label. These relevance sets may then be stored and recalled using this

semantic label. We incorporate relevance feedback into two basic browsing functions, pruning and

18

reorganization, which are discussed next.

5.3 Pruning of the Database

Pruning removes shots from the database that are not likely to be of interest to the user while
retaining all or most potentially desirable shots. Let R = {z1,...,2y} be the set of M relevant
keyframes that a user selects for the relevance set. We would like to retain all keyframes y in the
database such that

D(y,R)<T (15)

where T is a threshold and the distance measure D(y, R) is defined as
D(y, R) = minds(y, z) (16)

The distance dg(y, =) is a simple histogram-based distance function characterized by the parameter
vector @ which is a 13 component vector containing weights corresponding to the L, a, and b
components of the color, edge, and texture histogram features [16] of the shot tree, and the weights
Kseq, Kshot, Knrotion, and Kgemantic which were defined in Section 3.

The selection of the threshold 7' is done as follows: Let R; = R — {x;} be the set of relevance
keyframes with the keyframe z; removed. We define D; = D(z;, R;) and denote the order statistics
of D; as D(y) so that D,y < D,y1). It can be shown [66] that, if we choose the threshold as
T = D), then the pruned database will contain on the average n/(M + 1) of the keyframes that
satisfy Equation 15. For example, if the relevance set contains 10 images and D, is used as the
threshold, then on average % or 91% of the desired shots will be retained in after the pruning. An
important result proved in [66] is that the above result does not depend on the statistics of the
database or the properties of the distance measure, dg(y, x), used.

Pruning is useful because it reduces the size of the database, and therefore makes browsing
easier and more effective. While traditional query methods attempt to find shots that are likely
to be of interest, pruning retains all shots which are of possible interest, but at the expense of
retaining many questionable shots. Intuitively, pruning attempts to achieve high recall, but at
the expense of precision; whereas traditional queries tend to emphasize precision over recall. The
reduced precision of pruning is acceptable in ViBE because the similarity pyramid structure allows

users to efficiently browse the resulting shots.

19

5.4 Reorganization of the Database

The objective of reorganization is to dynamically rebuild the similarity pyramid based on the
relevance information. As with pruning, reorganization makes the browsing process more efficient
by moving the desired shots nearer to one another in the similarity pyramid structure.

Our objective is to find an estimate for the parameter vector, 8. This is done by minimizing a
cost function E(@, R) which uses cross-validation to estimate the separability of the relevance set R
from the rest of the database. The detailed form of E(0, R) is given in [66]. With this cost function,
we compute the optimal value of the parameter 8 = argming F(6, R) using conjugate gradient
optimization. The resulting distance function dg(y,) is then used in Equation 16 to rebuild the
similarity pyramid. The cross-validation approach gives reliable performance independently of the

database content and the specific choice of similarity measures [66].

6 Experimental Results

6.1 The Experimental Data Set

At this time ViBFE contains more than 100 hours of MPEG-1 sequences, which were recorded from
miscellaneous television programs. The sequences have been digitized at a rate of 1.5 Mbits/sec
in SIF format (352 x 240 pixels). All sequences used in our database are copyright cleared for use
in ViBE. We have selected 29 sequences from our database which we believe represent a number
of different program genres. Commercials in these sequences, if they exist, were edited out. The
locations and types of all the shot transitions in these sequences were recorded by a human operator.

These 29 sequences are classified into six program genres as follows: Soap operas (5 sequences)
which consist mostly of dialogue with little camera motion; talk shows (7 sequences), which contain
a large number of dissolves and camera motion at the start of the programs; sports (5 sequences),
containing miscellaneous sequences from football, basketball, and car racing programs with a lot
of special effects shot transitions. rapidly moving objects, and a high degree of camera motion;
news (4 sequences); movies (3 sequences) which contain sequences from the films Before He Wakes
and Lawrence of Arabia; and cspan (5 sequences) obtained from CSPAN and CSPAN-2 networks.
containing very long shots with very little camera or object motion.

With the exception of the sequences from Lawrence of Arabia we never use more than one
sequence from a given airing of a particular program in order to achieve maximum content variation.

Statistical information about these sequences is summarized in Table 1.

20

6.2 Cut Detection Experiments

To get an honest estimate of the performance of our cut detection system, we have used the following

procedure which is similar to a cross-validation procedure

for each genre G € {soap, talk, sports, news, movies, cspan}
fori=1to4
randomly choose two sequences, S1 and S, both not in G
train the regression tree using S; and So
process all the sequences in G using this tree
average the cut detection performance of the tree over the sequences in G
average the four sets of values to get the performance for genre G
Our experiments have shown that using a window size of W = 1, which means that the regression
tree uses 36 features, provides a reasonable balance between complexity and performance for cut
detection so we have used this value for our experiments. For all results of our method, we have
used a threshold of 7 = 0.35 as our detection criteria.
We have compared our method with the sliding window technique proposed in [28] and often
used in cut detection. In this technique, a symmetric window of size 2m + 1 is placed around the

ith frame and a cut is declared from frame i to i + 1 if
1. the value of the feature value for ¢ is the maximum within the window, and

2. it is also n times the value of the second maximum in the window.

We have used the sum of the histogram intersections of the Y, U, and V' components, i.e., g;1 +
gi,2+ i3 as the frame similarity feature. We chose the values m = 7 and n = 2 because these values
gave the best over all performance on our data sets. We should point out that the sliding window
technique does not use all the features in the feature vector and so has a distinct disadvantage.
Nevertheless, we use only the sum of the color histogram intersections as the feature for the sliding
window algorithm in order to be able to compare our results with those of a large number of authors.
who have used only this feature. We have also compared our results with a global thresholding
technique which uses the sum of the histogram intersections of the Y, U, and V' components, i.e.,
it uses g;1 + gi2 + gi,3 as the frame similarity feature. This simple method is included here as a
baseline, to serve as an indication of the relative difficulty in detecting the cuts in various video

genres. A global threshold value of 0.45 was found to give best results and this value was used for

21

all of our experiments. Again, we remove the cut with a lower feature value if two cuts are closer
than 10 frames.

The results of these experiments are shown in Table 2. From this table we can make the
following observations: The GT/regression tree method gives a very consistent performance for
video sequences with diverse content whereas the sliding window method runs into problems with
some types of sequences. This is most clear with the sports and news genres, where the the
detection rate of the sliding window detector is low. Our experiments have shown that the genres

of the sequences used to train the regression tree do not affect the performance of the system.
6.3 Pseudo-Semantic Classification

We have tested the face labeling algorithm described in Section 4 using seven video sequences
containing various program content. The root nodes of the shot trees were determined for each shot
and the corresponding frames were extracted from the MPEG sequence at full frame resolution.
Then ground truth information relative to “face” and “no face” was marked by hand for each
keyframe so obtained. The algorithm was trained using “face masks” obtained from manually
segmented faces from 100 randomly chosen frames that contained faces. The results were evaluated
in the following way: A false alarm is declared if the frame contains no faces, but our algorithm
detects at least one face; a detection is declared if the frame contains at least one face, and our
algorithm detects at least one face; and a correct classification is declared if there is no face in the
frame and our algorithm detects no faces.

Once we have merged skin-like regions, we apply a threshold to the dissimilarity values given
by Equation 12 in the remaining regions. If any value below the threshold exists, the frame is
said to contain at least one face. Thus, an optimal threshold can be obtained that maximizes
the classification rate. It is important to emphasize that no thresholds are used when similarity
measurements are performed. Our algorithm produces confidence values that are then used by the
browsing environment. Thresholds are used in this section only to show the performance of the
face labeling stage.

In Figure 9, a bounding box is drawn in each image for regions with dissimilarity value, C,
defined by Equation 12 is less than 20. As shown, we are able to detect faces under many different
illumination conditions and poses. Some false alarms, where faces are detected in frames containing
no human faces, are seen in Figures 9g and 9m-9p. Results for the face detection algorithm for a

number of sequences are given in Table 3.

22

6.4 Active Browsing

Figures 10a-f demonstrate the significance of each component of the shot dissimilarity measure.
Figures 10a-c show the first 15 shots returned for a query using a football shot (upper left hand
shot) when searching using 23 sequences of video. Figures 10a shows the result when only the Dgr
distance is used to compute the the distance between shot trees. Figures 10b and 10c show the
result when the motion distance, Dy, and the temporal distance, D, are added, respectively. We
observe that the temporal and motion information are important cues in identifying good matching
shots.

Figures 10d-f show the first 15 shots returned for a query using a local weather report shot
(upper left hand shot) when searching using 7 sequences of video. Figure 10d shows the result when
only using Dgr as the distance between shot trees. Figure 10e shows the result when the motion
distance, Dy, is added, and Figure 10f is the result when the pseudo-semantic distance, Dpg, is
added. For this search, the pseudo-semantic distance is very effective at identifying matching shots.

In Figure 11, we show the shots obtained using relevance feedback for similarity pyramid prun-
ing and redesign using the original pyramid and relevance set shown in Figure 8. Although the shots
in this relevance set have dissimilar attributes, they all form a single semantic category, “anchorper-
son”. The pruned set contains most of the shots which closely match the ones in the relevance set.
Figure 11b shows the reorganized sub-database where the dissimilarity function is defined by the
optimized distance described in Section 5.4. Notice that the shots in the relevance set are clustered
together. These experiments with ViBE indicate that the use of the pseudo-semantic labels and
motion and temporal information can provide powerful aids in querying and browsing digital video

libraries.

7 Conclusion

In this paper, we presented a new paradigm for video database management known as ViBE. ViBE
introduces a variety of novel algorithms and techniques for processing, representing, and managing
digital video in an integrated environment. We introduced a new way of performing shot boundary
detection through the use of the Generalized Trace and regression trees. We described a powerful
way of representing each video shot using a binary tree and discussed shot similarity measures
that exploit information in the shot tree and the shot boundaries. We also showed that the use of

pseudo-semantic labels provide a novel way of describing shots that can be used in our browsing

23

environment.

Future work includes populating ViBE with more video sequences, extending the GT /regression

tree approach to other types of shot transitions, the description of more pseudo-semantic labels and

the use of this information in our browsing environment. Our experiments have demonstrated that

the use of pseudo-semantic labels and motion information obtained from shot boundary detection

provide powerful cues in aiding browsing.

References

[1]

[10]

[11]

[12]

[13]

Arnold W. M. Smeulders, Marcel Worring, Simaon Santini, Amarnath Gupta, and Ramesh Jain,
“Content-based image retrieval at the end of the early years,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 22, no. 12, pp. 1349-1380, December 2000.

Alejandro Jaimes and Shih-Fu Chang, “A conceptual framework for indexing visual information at
multiple levels,” in Proceedings of SPIE Conference on Internet Imaging, San Jose, CA, January 2000,
vol. 3964.

ISO/IEC JTC1/SC29/WG11, “MPEG-T7: Requirements document (v12) w3548,” in MPEG Meeting,
Beijing, China, July 2000.

P. Salembier, R. Qian, N. O’Connor, P. Correia, I. Sezan, and P. van Beek, “Description schemes for
video programs, users and devices,” Signal Processing: Image communication, vol. 16, no. 1-2, pp.
211-234, September 2000.

Shih-Fu Chang, William Chen, Horace J. Meng, Hari Sundaram, and Di Zhong, “A fully automated
content-based video search engine supporting spatio-temporal queries,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 8, no. 5, pp. 602-615, September 1998.

A. Hampapur, A. Gupta, B. Horowitz, C. Shu, C. Fuller, J. Bach, M. Gorkani, and R. Jain, “Virage video
engine,” in Proceedings of SPIE Conference on Storage and Retrieval for Image and Video Databases
V, San Jose, CA, 13-14 February 1997, vol. 3022, pp. 188-197.

Savitha Srinivasan, Dulce Ponceleon, Arnon Amir, and Dragutin Petkovic, “What is in that video
anyway?: In search of better browsing,” in Proceedings of IEEE International Conference on Multimedia
Computing and Systems, Florence, Italy, June 1999, pp. 388-392.

Bob Davies, Rainer Lienhart, and Boon-Lock Yeo, “The video document,” in Proceedings of the SPIE
Conference on Multimedia Storage and Archiving Systems IV, 20-22 September 1999, vol. 3846, pp.
22-34.

A. Hanjalic, R.L. Lagendijk, and J. Biemond, “DANCERS: Delft advanced news retrieval system,” in
Proceedings of SPIE Conference on Storage and Retrieval for Media Databases 2001, San Jose, CA,
January 2001, pp. 301-301.

H. Lee, A. Smeaton, C. O’Toole, N. Murphy, S. Marlow, and N. O’Connor, “The fschlr digital video
recording, analysis, and browsing system,” in Proceedings of Content-Based Multimedia Information
Access Conference, (RIAO 2000), Paris, France, April 2000, pp. 1390-1399.

Howard D. Wactlar, “Informedia - search and summarization in the video medium,” in Proceedings of
the IMAGINA 2000 Conference, Monaco, January 31 - February 2 2000.

Jau-Yuen Chen, Cuneyt Taskiran, Alberto Albiol, Charles A. Bouman, and Edward J. Delp, “ViBE:
A video indexing and browsing environment,” in Proceedings of the SPIE Conference on Multimedia
Storage and Archiving Systems IV, Boston, MA, September 1999, vol. 3846, pp. 148-164.

Cuneyt Taskiran, Charles Bouman, and Edward J. Delp, “The ViBE video database system: An update
and further studies,” in Proceedings of the SPIE/ISET Conference on Storage and Retrieval for Media
Databases 2000, San Jose, CA, January 26-28 2000, pp. 199-207.

24

[14]

[15]

[16]

[17]

[18]

Cuneyt Taskiran and Edward J. Delp, “Video scene change detection using the generalized trace,”
in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Seattle, WA, May 12-15 1998.

Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone, Classification and Re-
gression Trees, Wadsworth International Group, Belmont, CA, 1984.

Jau-Yuen Chen, Charles A. Bouman, and John C. Dalton, “Similarity pyramids for browsing and
organization of large image databases,” in Proceedings of SPIE Conference on Human Vision and
Electionic Imaging III, San Jose, CA, January 26-29 1998, vol. 3299.

Ullas Gargi, Rangachar Kasturi, and Susan H. Strayer, “Fast scene change detection using direct
feature extraction from MPEG compressed videos,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 10, no. 1, pp. 1-13, February 2000.

Rainer Lienhart, “Comparison of automatic shot boundary detection algorithms,” in Proceedings of
SPIE Conference on Storage and Retrieval for Image and Video Databases VII, San Jose, CA, January
1999, vol. 3656, pp. 290-301.

C. O’'Toole, A. Smeaton, N. Murphy, and S. Marlow, “Evaluation of automatic shot boundary detection
on a large video test suite,” in Proceedings of the 2nd UK Conference on Image Retrieval, Newcastle,
UK, February 25-26 1999.

John Boreczky and Lawrence Rowe, “Comparison of video shot boundary detection techniques,” in
Proceedings of SPIE Conference on Storage and Retrieval for Image and Video Databases IV, San Jose,
CA, February 1996, vol. 2670, pp. 170-179.

Apostolos Dailianas, Robert B. Allen, and Paul England, “Comparison of automatic video segmentation
algorithms,” in Proceedings of SPIE Photonics Fast’95: Integration Issues in Large Commercial Media
Delivery Systems, Philadelphia, PA, October 1995, pp. 1-16.

Edoardo Ardizzone and Marco La Cascia, “Multifeature image and video content-based storage and
retrieval,” in Proceedings of SPIE Conference on Multimedia Storage and Archiving Systems, Boston,
MA, November 18-19 1996, vol. 2916, pp. 265-276.

A. Nagasaka and Y. Tanaka, “Automatic video indexing and full-video search for object appearances,”
in Visual Databases I, E. Knuth and L.M. Wegner, Eds., pp. 113-127. Austin, TX, 1995.

Behzad Shahraray, “Scene change detection and content-based sampling of video sequences,” in Pro-
ceedings of SPIE Conference on Digital Video Compression: Algorithms and Technologies, San Jose,
CA, February 1995, vol. 2419, pp. 2-13.

Nilesh V. Patel and Ishwar K. Sethi, “Video shot detection and characterization for video databases,”
Pattern Recognition, vol. 30, no. 4, pp. 583-592, April 1997.

W. Zhao, J. Wang, D. Bhat, K. Sakiewicz, and N. Nandhakumar, “Improving color based video shot
detection,” in IEEFE International Conference on Multimedia Computing and Systems, Florence, Italy,
7-11 June 1999, pp. 752-756.

A. M. Ferman and A. M. Tekalp, “Efficient filtering and clustering methods for temporal video seg-
mentation and visual summarization,” Journal of Visual Communicationa and Image Representation,
vol. 9, pp. 336-352, 1998.

Boon-Lock Yeo and Bede Liu, “Rapid scene analysis on compressed video,” IEEE Transactions on
Clircuits and Systems for Video Technology, vol. 5, no. 6, pp. 533-544, December 1995.

Seong-Whan Lee, Young-Min Kim, and Sung Woo Choi, “Fast scene change detection using direct
feature extraction from MPEG compressed videos,” IEEE Transactions on Multimedia, vol. 2, no. 4,
pp. 240-254, December 2000.

Jongho Nang, Seungwook Hong, and Youngin Thm, “An efficient video segmentation scheme for MPEG
video stream using macroblock information,” in Proceedings of the 7th ACM International Multimedia
Conference, Orlando, FL, October 30 - 5 November 1999.

Soo-Chang Pei and Yu-Zuong Chou, “Efficient MPEG compressed video analysis using macroblock
type information,” IEEFE Transactions on Multimedia, vol. 1, no. 4, pp. 321-333, December 1999.

25

[32]

[33]

[34]

[35]

[36]

[43]

[44]
[45]

[46]

[47]

[48]

[49]

Philippe Aigrain and Philippe Joly, “The automatic real-time analysis of film editing and transition
effects and its applications,” Computation and Graphics, vol. 18, no. 1, pp. 93-103, 1994.

Nuno Vasconcelos and Andrew Lippman, “A Bayesian video modeling framework for shot segmentation
and content characterization,” in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’97), San Juan, Purto Rico, October 4-7 1997.

Milind R. Naphade and Thomas S. Huang, “Stochastic modeling of soundtrack for efficient segmentation
and indexing of video,” in Proceedings of SPIE Conference on Storage and Retrieval for Media Databases
2000, San Jose, CA, January 2000, vol. 3972, pp. 168-176.

John Boreczky and Lynn D. Wilcox, “A hidden Markov model framework for video segmentation,” in
Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing, Seattle, WA,
May 1998, pp. 3741-3744.

J. Huang, Z. Liu, and Y. Wang, “Joint video scene segmentation and classification based on Hidden
Markov Model,” in IEEE International Conference on Multimedia and Ezpo (ICME 2000), New York,
NY, July 30 - August 2 2000.

Ke Shen and Edward J. Delp, “A fast algorithm for video parsing using MPEG compressed sequences,”
in Proceedings of IEEE International Conference on Image Processing, Washington, D.C., October 26-29
1995, pp. 252-255.

H. Cheng and C. A. Bouman, “Multiscale Bayesian segmentation using a trainable context model,”
IEEFE Transactions on Image Processing, vol. 10, no. 4, pp. 511-525, April 2001.

C. B. Atkins, C. A. Bouman, and J. P. Allebach, “Optimal image scaling using pixel classification,”
in Proceedings of IEEE International Conference on Image Processing, Thessaloniki, Greece, October
7-10 2001, pp. 864-867.

Saul Gelfand, C. Ravishankar, and Edward Delp, “An iterative growing and pruning algorithm for
classification tree design,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13,
no. 2, pp. 163-174, February 1991.

Yueting Zhuang, Yong Rui, Thomas S. Huang, and Sharad Mehrotra, “Adaptive key frame extraction
using unsupervised clustering,” in Proceedings of IEEE International Conference on Image Processing,
Chicago, IL, October 1998, pp. 866-870.

Mark S. Drew and James Au, “Video keyframe production by efficient clustering of compressed chro-
maticity signatures,” in Proceedings of the Fighth ACM Multimedia Conference, Los Angeles, CA,
October 30 - November 4 2000, pp. 365—-367.

Konstantin Y. Kupeev and Zohar Sivan, “An algorithm for efficient segmentation and selection of
representative frames in video sequences,” in Proceedings of SPIE Conference on Storage and Retrieval
for Media Databases 2001, San Jose, CA, January 2001, vol. 4315, pp. 24-26.

Jau-Yuen Chen, Charles A. Bouman, and John C. Dalton, “Hierarchical browsing and search of large
image databases,” IEEFE Transactions on Image Processing, vol. 9, no. 3, pp. 442-455, March 2000.

Jr. Joe H. Ward, “Hierarchical grouping to optimize an objective function,” Journal of the American
Statistical Association, vol. 58, pp. 236—244, 1963.

Milind R. Naphade, Minerva M. Yeung, and Boon-Lock Yeo, “A novel scheme for fast and efficient
video sequence matching using compact signatures,” in Proceedings of SPIE Conference on Storage and
Retrieval for Media Databases 2000, San Jose, CA, January 2000, vol. 3972, pp. 426-431.

Anil K. Jain, Aditya Vailaya, and Wei Xiong, “Query by video clip,” Multimedia Systems, vol. 7, no.
5, pp. 369-384, 1999.

Minerva M. Yeung, Boon-Lock Yeo, and Bede Liu, “Extracting story units from long programs for video
browsing and navigation,” in IFEFE International Conference on Multimedia Computing and Systems,
Hiroshima, Japan, June 17-21 1996, pp. 296-305.

Simone Santini and Ramesh Jain, “Beyond query by example,” in IEEE Second Workshop on Multi-
media Signal Processing, Redondo Beach, CA, December 1998, pp. 3-86.

26

[50]

[51]

[52]

[55]
[56]

[57]

Niels Haering, Richard J. Qian, and M. Ibrahim Sezan, “A semantic event-detection approach and its
application to detecting hunts in wildlife video,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 10, no. 6, pp. 857-868, September 2000.

Milind R. Naphade and Thomas S. Huang, “A probabilistic framework for semantic indexing and
retrieval in video,” in Proceedings of the IEEE International Conference on Multimedia and Ezpo, New
York, NY, July 31-August 2 2000.

W. Mahdi, M. Ardabilian, and L. Chen, “Automatic video content parsing based on exterior and interior
shots classification,” in SPIE Conference on Multimedia Storage and Archiving Systems, Boston, MA,
20-22 September 1999, vol. 3846, pp. 46-55.

Martin Szummer and Rosalind W. Picard, “Indoor-outdoor image classification,” in IEEFE International
Workshop on Content-Based Access of Video and Image Databases, Bombay, India, January 1998, pp.
42-51.

Aditya Vailaya, Mario Figueiredo, Anil Jain, and HongJiang Zhang, “A Bayesian framework for semantic
classification of outdoor vacation images,” in Proceedings of SPIE Conference on Storage and Retrieval
for Image and Video Databases VII, San Jose, CA, February 1999, vol. 3656, pp. 415-426.

Kin Choong Yow and Roberto Cipolla, “Feature-based human face detection,” Image and Vision
Computing, vol. 15, no. 9, pp. 713-735, 1997.

Henry A. Rowley, Shumeet Baluja, and Takeo Kanade, “Human face detection in visual scenes,”
Advances in Neural Information Processing Systems, vol. 8, pp. 875-881, 1996.

Antonio J. Colmenarez and Thomas S. Huang, “Face detection with information-based maximum
discrimination,” in Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, San Juan, PR, 1997, pp. 782-787.

C. Garcia and G. Tziritas, “Face detection using quantized skin color regions, merging and wavelet
packet analysis,” IEEE Transactions on Multimedia, vol. 1, no. 3, pp. 264—277, September 1999.

Alberto Albiol, Charles A. Bouman, and Edward J. Delp, “Face detection for pseudo-semantic labeling
in video databases,” in Proceedings of the IEEFE International Conference on Image Processing, Kobe,
Japan, October 25-28 1999.

Hualu Wang and Shih-Fu Chang, “A highly efficient system for automatic face recognition in MPEG
video,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 7, no. 4, pp. 615-628,
August 1997.

H. Luo and A. Eleftheriadis, “On face detection in the compressed domain,” in Proceedings of the ACM
Multimedia Conference, Los Angeles ,California, November 2000, pp. 285-294.

K. Sung and T. Poggio, “Example-based learning for view-based human face detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 39-51, January 1998.

Ming-Hsuan Yang and Narendra Ahuja, “Detecting human faces in color images,” in Proceedings of
IEEE International Conference on Image Processing, Chicago, IL, October 4-7 1998, pp. 127-130.

S. Beucher and F. Meyer, “The morphological approach to segmentation: The watershed transforma-
tion,” in Mathematical Morphology in Image Processing, E.R. Dougherty, Ed., chapter 12, pp. 433-481.
Marcel Dekker Inc., 1993.

Di Zhong and Shih-Fu Chang, “Spatio-temporal video search using the object based video represen-
tation,” in Proceedings of IEEE International Conference on Image Processing, Santa Barbara, CA,
October 1997, pp. 21-24.

Jau-Yuen Chen, Charles A. Bouman, and John Dalton, “Active browsing using similarity pyramids,”
in Proceedings of SPIE/ISET Conference on Storage and Retrieval for Image and Video Databases VII,
San Jose, CA, January 24-29 1999, vol. 3656, pp. 144-154.

Ingemar J. Cox, Matt L. Miller, Stephen M. Omohundro, and Peter N. Yianilos, “Pichunter: Bayesian
relevance feedback for image retrieval,” in Proceedings of International Conference on Pattern Recog-
nition, Vienna, Austria, August 1996, vol. 3, pp. 361-369.

27

[68] Leonid Taycher, Marco La Cascia, and Stan Sclaroff, “Image digestion and relevance feedback in the

Imagerover WWW search engine,” in Proceedings of International Conference on Visual Information,
San Diego, CA, December 15-17 1997.

[69] Yong Rui, Thomas S. Huang, and Sharad Mehrotra, “Relevance feedback techniques in interactive
content-based image retrieval,” in Proceedings of SPIE/IS&T Conference on Storage and Retrieval for
Image and Video Databases VI, San Jose, CA, January 26-29 1998, vol. 3312, pp. 25-36.

[70] G. N. Lance and W.T. Williams, “A general theory of classificatory sorting strategies. i. Hierarchical
systems,” Computer Journal, vol. 9, pp. 373—-380, 5 1966.

[71] Jau-Yuen Chen, Charles A. Bouman, and Jan P. Allebach, “Fast image database search using tree-
structured VQ,” in Proceedings of IEEFE International Conference on Image Processing, Santa Barbara,
CA, October 26-29 1997, vol. 2, pp. 827-830.

Video Shot Bou.nda .
Sequences Detection
Y '
Shot Tree . BAC“V? it
Representation rowsing Ser
Enviroment

Y

Pseudo-semantic
Labeling

Figure 1: Major components of the ViBE system

Ground truth .
Tree growing

sequences
Sequence GT extraction)
b Regression . Cut
tobe] and > » Postprocessing — .
. . tree locations
processed windowing

Figure 2: Schematic diagram for cut detection.

28

(a) (b)

Figure 3: (a) Each shot is represented by a hierarchy of frames which are organized with agglomer-
ative clustering; (b) Shot dissimilarity is then determined by computing the distance between two
trees.

root Skin Unsupervised Region and Hierarchical face
- S .~ — Feature . .
node Detection Segmentation Extraction Region Labeling label

Figure 4: Block diagram illustrating the processing steps used to obtain the pseudo-semantic “face”
label for the root node of each shot tree.

(b)
Figure 5: (a) Original image. (b) Skin-like detected pixels. (c) Homogeneous skin-like regions. (d)

Detected face

14 /l\i e9 16
12 5 6 13 10
3
11 O4 7 8
1 2

Figure 6: Binary tree structure resulting from skin-like region merging.

. I -| ke 0 o R

(P .
e e
B FIRRE

—r—

ST Ao RN S
oz [—F——

Figure 7: An example of a similarity pyramid and its embedded quad-tree.

29

RS AT S G
LT ST - T
S APAEY o S - EE
2 A M - -
TEANTE L EESERE
NS CIPYEEET -
T UL AT
I O

Figure 8: Active Browsing Environment: The top level of the similarity pyramid is shown on the
left, and the set of relevant shots (relevance set) is shown on the right. Users can incrementally
add or remove shots from the relevance set as they browse through the database.

Figure 9: The boxes indicate the faces detected for C' < 20.

30

(a) Dgr (shot tree distance)

(b) Dg7 + Dy (a + motion distance)

(¢) Dsr + Dy + D (b + temporal distance)

DT skr DEEEe
R el 200 S O = e

(d) Dgr (shot tree distance)

(e) Dgr + Djs (d + motion distance)

(f) Dsr + Dy + Dps (e + psudo-semantic dist.)

Figure 10: Example of search results using different similarity measures.

T] N Y S, Y
0 S I T L =

(a) organized with default weightings

(b) organized with optimized distance

Figure 11: The pruning result of Figure 8. (a) The pyramid organized with the default weights (b)
The pyramid organized using the optimized distance measure.

Genre # frames | # cuts | # dissolves | # fades | # others | avg. shot length
soap 67582 337 2 0 0 196 + 17
talk 107150 331 108 1 6 239 £ 97
sports 78051 173 45 0 29 299 + 40
news 58219 297 7 0 6 182 + 10
movies 54160 262 15 6 1 760 £ 270
cspan 90269 95 19 0 0 206 + 81
TOTAL || 455431 1495 196 7 42

Table 1: The number of different types of shot boundaries for different programe genres used. The
mean shot length and standard deviation in frames is also given.

31

tree classifier sliding window stmple thresholding
Genre D FA | MC D FA | MC D FA | MC
soap 0941 | 133 | O 0.916 | 99 0.852 | 24 0
talk 0.942 | 32.3 | 7.5 | 0.950 | 45 0.968 | 171 15
sports || 0.939 | 82.5 | 34.8 || 0.785 | 59 0.925 | 251 73
news || 0.958 | 38.0 | 0.75 || 0.886 | 61 0.926 | 212 1
movies || 0.821 | 43.3 | 2 0.856 | 25 0.816 | 25 3
cspan || 0.915 | 54.3 | 8.5 | 0.994 | 40 0.943 | 3 20

o|lo|o|——O

Table 2: Results for cut detection using the GT/tree classifier (GT), sliding window (SW), and
simple thresholding (ST) methods. For the SW and ST methods the performance for each genre
is computed as the mean performance over all sequences in that genre. For the GT method, the
mean is taken over the 4 training instances, as described in Section 6.2. D indicates the detection
rate and FA indicates the number of false alarms, for each program genre. M(C are the number of
misclassifications where a cut was declared at a position where a shot boundary other than a cut
was present.

Sequence || Shots | Faces | Detect (%) | FA (%) | Correct (%)
newsl 231 76 73.7 16.1 80.5
news2 72 29 93.1 23.3 83.3
news3 78 33 87.9 15.6 86.0
news4 103 42 90.5 13.1 88.3
newsb 188 51 76.5 13.9 83.5
movie 142 92 84.8 28.0 80.3
drama 100 90 94.4 20.0 93.0
total 914 413 85.2 17.0 84.0

Table 3: Results for face detection using the ground truth sequences. Faces indicates the number
of shots containing at least one face. Detect and FA indicate the detection and false alarm rates,
respectively, and Correct indicates the correct classification rate.

32

