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ABSTRACT 

This paper describes Slepian-Wolf codes based on overlapped 
quasi-arithmetic codes, where overlapping allows lossy 
compression of the source below its entropy. In the context of 
separate decoding, these codes are not uniquely decodable: the 
overlap introduces ambiguity in the decoding process leading to 
decoding errors. The presence of correlated side information at 
the decoder is used to remove this ambiguity and achieve a 
vanishing error probability.  The state models and the automata 
of the overlapped quasi-arithmetic codes are described. The 
soft decoding algorithm with side information is then 
presented. The performance of these codes has been assessed 
first on theoretical sources and integrated in a distributed video 
coding platform. 
Index Terms— Distributed video coding, Wyner-Ziv coding, 
coding with side information, arithmetic codes 

1. INTRODUCTION 

Distributed source coding (DSC) refers to the problem of 
compressing correlated signals captured by different sensors 
which do not communicate between themselves. DSC finds its 
foundation in the seminal Slepian-Wolf [1] and Wyner-Ziv [2] 
theorems establishing lossless rate bounds and rate-distortion 
bounds respectively. Most Slepian-Wolf and Wyner-Ziv coding 
systems are based on channel coding principles, using e.g., 
coset codes [3] or turbo codes [4]. The statistical dependence 
between two sources is modeled as a virtual correlation channel 
analogous to binary symmetric channels or additive white 
Gaussian noise (AWGN) channels. The use of entropy source 
codes tailored to the conditional distribution between the two 
sources has also been considered for DSC in [5]. 

This paper considers the design of Slepian-Wolf codes 
based on arithmetic and quasi-arithmetic codes. The basic idea 
is to allow the intervals corresponding to each source symbol to 
overlap. This procedure can achieve arbitrary compression 
controlled by the amount of allowed overlap, but, as already 
stated by Langdon in [6], it leads to a code which is not 
uniquely decodable. This work is a preliminary exploration of 
the possibility of using the side information available only at 
the decoder to disambiguate the overlaps. 

It is shown that overlapped arithmetic (OA) and quasi-
arithmetic (OQA) codes can be represented with an encoding 
and a decoding state machine (SM). The method to obtain these 

state machines is adapted from the ones proposed in [7] and [8]. 
The representation of OA and OQA codes by SM allows 
defining a symbol clock based state model for soft decoding of 
these codes. Finally, the side information available at the 
decoder is integrated into this state model to help the decoder 
remove the ambiguity introduced by the overlapping intervals 
principle. 

Multiple reasons motivate the research of source codes in 
addition to channel codes. For example, the proposed DSC 
scheme can be easily extended to non-binary sources by just 
considering non-binary source codes. Moreover, for non 
uniform sources or sources with memory, the additional 
information about the distribution of the source is directly 
exploited by the decoder. Finally, the considered scheme does 
not require the source to be uniform to perform optimally, as 
turbo codes do, for example. 

Section 2 describes overlapped codes, their construction 
and the problem posed by their ambiguous decoding. Section 3 
then presents the soft decoding scheme used to decode these 
codes. Section 4 gives simulation results for theoretical sources. 
Section 5 outlines how these codes can be embedded in a DVC 
architecture and finally Section  6 extracts some conclusions 
and sketches the future research lines derived from this 
preliminary work. 

2. THE OVERLAPPING TECHNIQUE 

Let X = X1; : : : ; XK be a symbol string generated by a 
binary memoryless source. The alphabet of the source is 
A = fa; bg and the probability of symbol a is denoted Pa. 
Only binary memoryless sources are considered in this work 
but the results can be generalized to Markov sources and to 
non-binary alphabets. 

In classical binary arithmetic coding, the interval [0; 1) is 
recursively partitioned according to the source probabilities. At 
each symbol clock instant n, the current interval In = 
[Ln; Hn ) is partitioned into two subintervals Ia

n+1 and Ib
n+1 

whose widths are proportional to Pa and Pb = 1¡ Pa 
respectively. We hence have Ia

n+1 = [Ln; Pa(Hn ¡ Ln) ) 
and Ib

n+1 = [Pa(Hn ¡ Ln);Hn ). One of these subintervals 
is selected according to the value of Xn+1 and becomes the 
current interval. Once the last symbol is encoded, the encoder 
outputs enough bits to distinguish the final interval from all 
other possible intervals of [0; 1). 
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To reduce the coding delay, bits can be output during the 
encoding process as soon as the current interval is entirely in 
[0; 0:5) (a bit 0 is output) or entirely in [0:5; 1) (a bit 1 is 
output). The current interval is rescaled each time a bit is 
output. The arithmetic principle has been represented in [9] as a 
stochastic model used for soft decoding of these codes. The 
number of states is finite if the source probabilities are known 
but it exponentially increases with the sequence length. 

It has been shown in [10] that the number of states of an 
arithmetic code can be reduced for a slight loss in compression 
performance. The initial interval is set to [0; N) where N  is an 
integer. The partitioning of the current interval is done as in 
arithmetic coding but the current intervals are always integer 
intervals. This principle is called quasi-arithmetic (QA) coding. 
The main interest of QA coding is that the number of states of 
the encoder is finite and does not increase with the sequence 
length. 

In the case of overlapped encoding, the current interval is 
first partitioned according to the source probabilities, but the 
subintervals are then modified so that they overlap. The 
parameter ½ controls the width of overlapping between the 
subintervals. It can be seen in Figure 1 that the overlapping 
allows wider subintervals, and this leads to higher compression. 
The subintervals of In = [ Ln; Hn ) are defined as follows: 

 
½

Ia
n+1 = [Ln; Pa(Hn ¡ Ln) + ½N=2 )
Ib

n+1 = [Pa(Hn ¡ Ln)¡ ½N=2;Hn )
 (1) 

Note that this partitioning of the current interval can be 
applied to both arithmetic (by taking N = 1) and quasi-
arithmetic coding (by taking N > 1 and by rounding the 
bounds of the subintervals to the nearest integers). 

Since it has been shown in [10] that the loss of compression 
efficiency introduced by integer arithmetic coding is very low, 
overlapped quasi-arithmetic coding will be considered in the 
following. 

A finite state encoder is hence obtained by applying this 
alternative method of partitioning the current interval. The 
encoder state machine depends on N , Pa and the overlapping 
factor ½. The number of states of the encoder can be reduced by 
removing the mute transitions (i.e., the transitions that do not 
output any bit) as explained in [8]. 

An example of OQA encoder is given in Figure 2. This 
encoder is not uniquely decodable. For instance, when at state 
[0, 6), symbol strings bbaaa and babb are encoded with the 
same bit string 1001. 

The overlap principle results in enlarging the current 
interval, and hence in reducing the number of output bits. 
Indeed, bits are output as soon as the current interval entirely 

lies in the first or second half of [0; N).  Examples of the 
compression performance of an N  = 8 OQA encoder are given 
in TABLE 1 for different values of ½ and Pa. Observe that for ½ 
= 0 (no overlapping) the compression rate is very close to the 
entropy, as one would expect from conventional arithmetic 
codes. The non-monotonic nature of the rows is due to the 
small N  used. As N  grows and the performance of the quasi 
arithmetic codes converges to that of pure arithmetic codes, 
better compression rates are achieved and the rows become 
monotonically decreasing. 

3. SOFT DECODING OF OVERLAPPED CODES 

It has been shown in the previous section how to define 
overlapped arithmetic and quasi-arithmetic encoders. Both kind 
of encoder can be defined with a state machine. The state 
machine generates a variable number of bits depending on the 
current state and the next source symbol(s) that have to be 
encoded. A decoding SM can be computed by just inverting the 
inputs and outputs of the encoding SM. Note that this holds 
only if the encoding state machine does not contain mute 
transitions.  

Let T = f®0; : : : ; ®dg be the set of states of the decoding 
SM. As the mute transitions of this SM have been removed, a 
variable number of transitions leave each state of the SM as it 
can be seen in Figure 2. For every transition t in the decoding 
SM, let bt be the bit string that labels this transition and st the 
symbol string output by this transition. The corresponding 
length of bt and st are denoted bt  and st  respectively. 

The overlapping mechanism results in ambiguity being 
introduced in the encoded bit string, and this means that, even 
if the received bit string is error-free, more than one symbol 
sequence will be retrieved by the decoding state machine. In 
the following, it will be assumed that a side information 
Y = Y1 : : : ; YK correlated to X is available at the decoder 

a

b

Pa Pb0.0
ρ

1.0

b

Figure 1. Example of overlapped arithmetic encoding. Ps is the 
probability of symbol s and ½ is the overlapping factor. The 

sequence abb has been encoded into the shown final interval. 

[0, 8)

[0, 6)[2, 8)

aaa / 01
aabaa / 011

aabab / 10000
aabb / 1000

ab / 10

b / 1

abaa / 011
abab / 10000

abb / 100
b / 1

aa / 0
a / 0

baa / 011
baab / 10000

bab / 100

bb / 10

 
Figure 2. SM for an example binary OQA encoder. N=8, Pa=0.6, 
Pb=0.4 and ½=0.1. fa; bg are input symbols, f0; 1g are output bits.

TABLE 1. Compression rates obtained for a N  = 8 overlapped 
quasi-arithmetic code at different values of Pa and ½ after 

simulation of 1000 strings of 1000 symbols each. 
½ Pa 0.5 0.6 0.7 

0.0 1.000 0.992 0.888 
0.1 1.000 0.849 0.702 
0.2 0.682 0.706 0.628 
0.3 0.513 0.558 0.519 

H(X) 1.000 0.971 0.881 



side. The amount of correlation between X and Y  is denoted 
¹. In other words, for 1 · i · K , P(Xi = Yi) = ¹. In order 
to optimally exploit this additional information, a symbol clock 
based state model has to be defined. The state model for soft 
decoding of overlapped codes is defined by the pairs (Nk;Mk) 
where Nk is the state of the decoding SM at the bit clock 
instant k (i.e., Nk 2 T ) and Mk represents the possible values 
of the symbol clock at the bit clock instant k. Such a model for 
soft decoding of arithmetic and quasi-arithmetic codes was 
proposed in [9] and [7]. The transition probabilities on this 
model are defined as follows: 

P
¡
Nk =®i;Mk =m0¯̄Nl =®j;Ml =m

¢
=½

P
¡
Nk =®i

¯̄
Nl =®j

¢
if k¡ l = bt and m0 ¡m= st

0 otherwise  

(2)

where the probabilities P(Nk = ®ijNl = ®j) are deduced 
from the source statistics and the decoding SM. A Viterbi [11] 
or BCJR [12] algorithm can be applied on this state model in 
order to estimate X. The symbol clock based model defined 
above allows us to integrate the information brought by Y  in 
the decoding trellis. To take into account this additional 
information, the branch metric of a transition t, denoted 
°t(Nk; Mk jNl;Ml), used for the BCJR or Viterbi algorithm 
are defined as follows: 

°
¡
Nk;Mk

¯̄
Nl;Ml

¢
= P

¡
Ym0 : : : Ym = st

¢
£ P

¡
Nk = ®i;Mk = m0 ¯̄Nl = ®j ;Ml = m

¢
 

(3)

where P(Ym0 : : : Ym = st) is deduced from the correlation 
between X and Y . The Viterbi algorithm selects the most 
probable sequence given the side information, whereas the 
BCJR algorithm computes the a-posteriori marginal 
probabilities of each bit or each symbol. 

4. RESULTS WITH THEORETICAL SOURCES  

1000 symbol strings of 1000 binary symbols each have been 
simulated and the results averaged. The obtained Symbol Error 
Rate (SER) is shown in Figure 3 (for N=16, Pa=0.5 and ½=0.1) 
and Figure 4 (for N=16, Pa=0.8 and ½=0.1), along with the 
Slepian-Wolf bound (equal to the compression rate). H(XjY ) 
is the binary entropy of ¹. As an upper bound, the SER for a 
trivial decoding mechanism is also shown: the side information 
is directly regarded as the decoded output, so the probability of 
symbol error is 1¡ ¹. Please note that Figure 3 and Figure 4 
use N=16 whereas TABLE 1 used N=8. 

It can readily be seen that in both set-ups the OQA codes 
work better than the trivial solution, and the SER decreases 
when the Slepian-Wolf bound is crossed, although not very 
sharply. 

5. APPLICATION TO DVC 

In a complete DVC architecture OQA codes can be used in the 
place of the Slepian-Wolf codec. The final performance will 
probably depend on many design decisions like: i) how the 
source statistics are found, ii) how the target compression is 
selected (this is the rate control problem every DSC codec 
faces) and iii) the relationship between the target compression 
and the overlapping factor has to be studied (it depends on the 
overlapping mechanism). 

Since not all of these issues have been solved yet, 
experiments have been conducted on data extracted from video 
sequences and only the performance of the Slepian-Wolf code 
has been assessed instead of the whole codec. 

400 frames of the Foreman test sequence at QCIF 
resolution have been introduced into the DVC system1 
described in [13] to obtain strings of binary symbols. These 
strings come from different DCT bands and different bit planes, 
so they all have different statistics and have memory. They 
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 Figure 3. Decoding performance for a compression Figure 4. Decoding performance for a compression  
 rate of 0.81 bits/symbol (Source entropy is 0.5) rate of 0.56 bits/symbol (Source entropy is 0.722) 

1 This software is called DISCOVER-codec and is the copyrighted work of the research project “Distributed coding for video services”
(DISCOVER), FP6-2002-IST-C contract no.: 015314 of the European Commission. It cannot be copied, reproduced nor distributed without 
the consent of the project consortium. 
The DISCOVER software started from the so-called IST-WZ software developed at the Image Group from Instituto Superior Técnico 
(IST), Lisbon-Portugal (http://amalia.img.lx.it.pt/), by Catarina Brites, João Ascenso, and Fernando Pereira. 



have then been separately coded using the turbo codec already 
present in the system and OQA codes. The side information has 
been generated by interpolating neighboring key frames 
inserted in between every Wyner-Ziv frame (GOP size = 2). A 
4x4 DCT transform is used, so each bitplane in a frame 
produces a string of 1584 binary symbols. 200 such symbol 
strings from all available Wyner-Ziv frames have been 
simulated and the results averaged. 

With this set-up, the source probabilities (Pa) and the 
conditional entropy (the correlation ¹ with the side 
information) are fixed by the sequence, the interpolation 
algorithm and the examined DCT band and bit plane. Varying 
the ½ parameter (the overlapping factor) produces different 
compression ratios and different SER, depicted in Figure 5 and 
Figure 6. The Slepian-Wolf bound is also plot, and, again, the 
trivial decoder used in the previous subsection is used as an 
upper bound (1¡ ¹). The correlation of the side information 
with the original string is independent of the compression ratio, 
so this bound is now a straight line. 

It can be seen that the SER increases as the compression 
increases and approaches the Slepian-Wolf bound, and that the 
OQA codes perform better than the trivial solution. Also, BCJR 
decoding works better than Viterbi as expected. It is also 
apparent that the performance of the OQA codes is still far 
from that of the turbo codes, which achieve comparable SER 
with higher compression. The next section points out some 
possible lines of action to bridge the gap with turbo codes. 

6. CONCLUSIONS AND FUTURE WORK 

This work is a preliminary exploration of the possibility of 
using Overlapped Quasi-Arithmetic Codes as a proposal for the 
Slepian-Wolf coding approach. Simulation results indicate that 
OQA codes perform better than just trusting the side 
information, but are still far from the performance of state-of-
the-art turbo codes. However, the authors believe that the 
approach is very promising and worth exploring. 

These results can still be improved by designing 
overlapping methods other than the one described in Section 2 
and by taking source memory into account, for example. 

Regarding encoding complexity, it is comparable to that of 
turbo codes, since in practice turbo codes are also implemented 
as state machines (plus an interleaver). 
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 Figure 5. Results for N = 16, Band 0, bit plane 3. Figure 6. Results for N = 16, Band 3, bit plane 0. 
 Pa = 0.54, H(X|Y) = 0.36 Pa = 0.75, H(X|Y) = 0.44 


