
OVERLAPPED QUASI-ARITHMETIC CODES FOR DISTRIBUTED VIDEO CODING

Xavi Artigas1, Simon Malinowski2, Christine Guillemot3, Luis Torres1

1Technical University of Catalonia, {xavi, luis}@gps.tsc.upc.edu
2IRISA/University of Rennes, smalinow@irisa.fr

3IRISA/INRIA, cguillem@irisa.fr

ABSTRACT

This paper describes Slepian-Wolf codes based on overlapped
quasi-arithmetic codes, where overlapping allows lossy
compression of the source below its entropy. In the context of
separate decoding, these codes are not uniquely decodable: the
overlap introduces ambiguity in the decoding process leading to
decoding errors. The presence of correlated side information at
the decoder is used to remove this ambiguity and achieve a
vanishing error probability. The state models and the automata
of the overlapped quasi-arithmetic codes are described. The
soft decoding algorithm with side information is then
presented. The performance of these codes has been assessed
first on theoretical sources and integrated in a distributed video
coding platform.
Index Terms— Distributed video coding, Wyner-Ziv coding,
coding with side information, arithmetic codes

1. INTRODUCTION

Distributed source coding (DSC) refers to the problem of
compressing correlated signals captured by different sensors
which do not communicate between themselves. DSC finds its
foundation in the seminal Slepian-Wolf [1] and Wyner-Ziv [2]
theorems establishing lossless rate bounds and rate-distortion
bounds respectively. Most Slepian-Wolf and Wyner-Ziv coding
systems are based on channel coding principles, using e.g.,
coset codes [3] or turbo codes [4]. The statistical dependence
between two sources is modeled as a virtual correlation channel
analogous to binary symmetric channels or additive white
Gaussian noise (AWGN) channels. The use of entropy source
codes tailored to the conditional distribution between the two
sources has also been considered for DSC in [5].

This paper considers the design of Slepian-Wolf codes
based on arithmetic and quasi-arithmetic codes. The basic idea
is to allow the intervals corresponding to each source symbol to
overlap. This procedure can achieve arbitrary compression
controlled by the amount of allowed overlap, but, as already
stated by Langdon in [6], it leads to a code which is not
uniquely decodable. This work is a preliminary exploration of
the possibility of using the side information available only at
the decoder to disambiguate the overlaps.

It is shown that overlapped arithmetic (OA) and quasi-
arithmetic (OQA) codes can be represented with an encoding
and a decoding state machine (SM). The method to obtain these

state machines is adapted from the ones proposed in [7] and [8].
The representation of OA and OQA codes by SM allows
defining a symbol clock based state model for soft decoding of
these codes. Finally, the side information available at the
decoder is integrated into this state model to help the decoder
remove the ambiguity introduced by the overlapping intervals
principle.

Multiple reasons motivate the research of source codes in
addition to channel codes. For example, the proposed DSC
scheme can be easily extended to non-binary sources by just
considering non-binary source codes. Moreover, for non
uniform sources or sources with memory, the additional
information about the distribution of the source is directly
exploited by the decoder. Finally, the considered scheme does
not require the source to be uniform to perform optimally, as
turbo codes do, for example.

Section 2 describes overlapped codes, their construction
and the problem posed by their ambiguous decoding. Section 3
then presents the soft decoding scheme used to decode these
codes. Section 4 gives simulation results for theoretical sources.
Section 5 outlines how these codes can be embedded in a DVC
architecture and finally Section 6 extracts some conclusions
and sketches the future research lines derived from this
preliminary work.

2. THE OVERLAPPING TECHNIQUE

Let X = X1; : : : ; XK be a symbol string generated by a
binary memoryless source. The alphabet of the source is
A = fa; bg and the probability of symbol a is denoted Pa.
Only binary memoryless sources are considered in this work
but the results can be generalized to Markov sources and to
non-binary alphabets.

In classical binary arithmetic coding, the interval [0; 1) is
recursively partitioned according to the source probabilities. At
each symbol clock instant n, the current interval In =
[Ln; Hn) is partitioned into two subintervals Ia

n+1 and Ib
n+1

whose widths are proportional to Pa and Pb = 1¡ Pa
respectively. We hence have Ia

n+1 = [Ln; Pa(Hn ¡ Ln))
and Ib

n+1 = [Pa(Hn ¡ Ln);Hn). One of these subintervals
is selected according to the value of Xn+1 and becomes the
current interval. Once the last symbol is encoded, the encoder
outputs enough bits to distinguish the final interval from all
other possible intervals of [0; 1).

The work presented was developed within DISCOVER, a European Project (http://www.discoverdvc.org), funded under the European
Commission IST FP6 programme. This work has also been partially supported by TEC2005–07751–C02–02 grant of the Spanish Government.

To reduce the coding delay, bits can be output during the
encoding process as soon as the current interval is entirely in
[0; 0:5) (a bit 0 is output) or entirely in [0:5; 1) (a bit 1 is
output). The current interval is rescaled each time a bit is
output. The arithmetic principle has been represented in [9] as a
stochastic model used for soft decoding of these codes. The
number of states is finite if the source probabilities are known
but it exponentially increases with the sequence length.

It has been shown in [10] that the number of states of an
arithmetic code can be reduced for a slight loss in compression
performance. The initial interval is set to [0; N) where N is an
integer. The partitioning of the current interval is done as in
arithmetic coding but the current intervals are always integer
intervals. This principle is called quasi-arithmetic (QA) coding.
The main interest of QA coding is that the number of states of
the encoder is finite and does not increase with the sequence
length.

In the case of overlapped encoding, the current interval is
first partitioned according to the source probabilities, but the
subintervals are then modified so that they overlap. The
parameter ½ controls the width of overlapping between the
subintervals. It can be seen in Figure 1 that the overlapping
allows wider subintervals, and this leads to higher compression.
The subintervals of In = [Ln; Hn) are defined as follows:

½

Ia
n+1 = [Ln; Pa(Hn ¡ Ln) + ½N=2)
Ib

n+1 = [Pa(Hn ¡ Ln)¡ ½N=2;Hn)
 (1)

Note that this partitioning of the current interval can be
applied to both arithmetic (by taking N = 1) and quasi-
arithmetic coding (by taking N > 1 and by rounding the
bounds of the subintervals to the nearest integers).

Since it has been shown in [10] that the loss of compression
efficiency introduced by integer arithmetic coding is very low,
overlapped quasi-arithmetic coding will be considered in the
following.

A finite state encoder is hence obtained by applying this
alternative method of partitioning the current interval. The
encoder state machine depends on N , Pa and the overlapping
factor ½. The number of states of the encoder can be reduced by
removing the mute transitions (i.e., the transitions that do not
output any bit) as explained in [8].

An example of OQA encoder is given in Figure 2. This
encoder is not uniquely decodable. For instance, when at state
[0, 6), symbol strings bbaaa and babb are encoded with the
same bit string 1001.

The overlap principle results in enlarging the current
interval, and hence in reducing the number of output bits.
Indeed, bits are output as soon as the current interval entirely

lies in the first or second half of [0; N). Examples of the
compression performance of an N = 8 OQA encoder are given
in TABLE 1 for different values of ½ and Pa. Observe that for ½
= 0 (no overlapping) the compression rate is very close to the
entropy, as one would expect from conventional arithmetic
codes. The non-monotonic nature of the rows is due to the
small N used. As N grows and the performance of the quasi
arithmetic codes converges to that of pure arithmetic codes,
better compression rates are achieved and the rows become
monotonically decreasing.

3. SOFT DECODING OF OVERLAPPED CODES

It has been shown in the previous section how to define
overlapped arithmetic and quasi-arithmetic encoders. Both kind
of encoder can be defined with a state machine. The state
machine generates a variable number of bits depending on the
current state and the next source symbol(s) that have to be
encoded. A decoding SM can be computed by just inverting the
inputs and outputs of the encoding SM. Note that this holds
only if the encoding state machine does not contain mute
transitions.

Let T = f®0; : : : ; ®dg be the set of states of the decoding
SM. As the mute transitions of this SM have been removed, a
variable number of transitions leave each state of the SM as it
can be seen in Figure 2. For every transition t in the decoding
SM, let bt be the bit string that labels this transition and st the
symbol string output by this transition. The corresponding
length of bt and st are denoted bt and st respectively.

The overlapping mechanism results in ambiguity being
introduced in the encoded bit string, and this means that, even
if the received bit string is error-free, more than one symbol
sequence will be retrieved by the decoding state machine. In
the following, it will be assumed that a side information
Y = Y1 : : : ; YK correlated to X is available at the decoder

a

b

Pa Pb0.0
ρ

1.0

b

Figure 1. Example of overlapped arithmetic encoding. Ps is the
probability of symbol s and ½ is the overlapping factor. The

sequence abb has been encoded into the shown final interval.

[0, 8)

[0, 6)[2, 8)

aaa / 01
aabaa / 011

aabab / 10000
aabb / 1000

ab / 10

b / 1

abaa / 011
abab / 10000

abb / 100
b / 1

aa / 0
a / 0

baa / 011
baab / 10000

bab / 100

bb / 10

Figure 2. SM for an example binary OQA encoder. N=8, Pa=0.6,
Pb=0.4 and ½=0.1. fa; bg are input symbols, f0; 1g are output bits.

TABLE 1. Compression rates obtained for a N = 8 overlapped
quasi-arithmetic code at different values of Pa and ½ after

simulation of 1000 strings of 1000 symbols each.
½ Pa 0.5 0.6 0.7

0.0 1.000 0.992 0.888
0.1 1.000 0.849 0.702
0.2 0.682 0.706 0.628
0.3 0.513 0.558 0.519

H(X) 1.000 0.971 0.881

side. The amount of correlation between X and Y is denoted
¹. In other words, for 1 · i · K , P(Xi = Yi) = ¹. In order
to optimally exploit this additional information, a symbol clock
based state model has to be defined. The state model for soft
decoding of overlapped codes is defined by the pairs (Nk;Mk)
where Nk is the state of the decoding SM at the bit clock
instant k (i.e., Nk 2 T) and Mk represents the possible values
of the symbol clock at the bit clock instant k. Such a model for
soft decoding of arithmetic and quasi-arithmetic codes was
proposed in [9] and [7]. The transition probabilities on this
model are defined as follows:

P
¡
Nk =®i;Mk =m0¯̄Nl =®j;Ml =m

¢
=½

P
¡
Nk =®i

¯̄
Nl =®j

¢
if k¡ l = bt and m0 ¡m= st

0 otherwise

(2)

where the probabilities P(Nk = ®ijNl = ®j) are deduced
from the source statistics and the decoding SM. A Viterbi [11]
or BCJR [12] algorithm can be applied on this state model in
order to estimate X. The symbol clock based model defined
above allows us to integrate the information brought by Y in
the decoding trellis. To take into account this additional
information, the branch metric of a transition t, denoted
°t(Nk; Mk jNl;Ml), used for the BCJR or Viterbi algorithm
are defined as follows:

°
¡
Nk;Mk

¯̄
Nl;Ml

¢
= P

¡
Ym0 : : : Ym = st

¢
£ P

¡
Nk = ®i;Mk = m0 ¯̄Nl = ®j ;Ml = m

¢

(3)

where P(Ym0 : : : Ym = st) is deduced from the correlation
between X and Y . The Viterbi algorithm selects the most
probable sequence given the side information, whereas the
BCJR algorithm computes the a-posteriori marginal
probabilities of each bit or each symbol.

4. RESULTS WITH THEORETICAL SOURCES

1000 symbol strings of 1000 binary symbols each have been
simulated and the results averaged. The obtained Symbol Error
Rate (SER) is shown in Figure 3 (for N=16, Pa=0.5 and ½=0.1)
and Figure 4 (for N=16, Pa=0.8 and ½=0.1), along with the
Slepian-Wolf bound (equal to the compression rate). H(XjY)
is the binary entropy of ¹. As an upper bound, the SER for a
trivial decoding mechanism is also shown: the side information
is directly regarded as the decoded output, so the probability of
symbol error is 1¡ ¹. Please note that Figure 3 and Figure 4
use N=16 whereas TABLE 1 used N=8.

It can readily be seen that in both set-ups the OQA codes
work better than the trivial solution, and the SER decreases
when the Slepian-Wolf bound is crossed, although not very
sharply.

5. APPLICATION TO DVC

In a complete DVC architecture OQA codes can be used in the
place of the Slepian-Wolf codec. The final performance will
probably depend on many design decisions like: i) how the
source statistics are found, ii) how the target compression is
selected (this is the rate control problem every DSC codec
faces) and iii) the relationship between the target compression
and the overlapping factor has to be studied (it depends on the
overlapping mechanism).

Since not all of these issues have been solved yet,
experiments have been conducted on data extracted from video
sequences and only the performance of the Slepian-Wolf code
has been assessed instead of the whole codec.

400 frames of the Foreman test sequence at QCIF
resolution have been introduced into the DVC system1
described in [13] to obtain strings of binary symbols. These
strings come from different DCT bands and different bit planes,
so they all have different statistics and have memory. They

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

H(X |Y)

SE
R

1-µ

OQAC, Viterbi

OQAC, BCJR

S-W Bound

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.00 0.10 0.20 0.30 0.40 0.50 0.60

H(X |Y)

SE
R

1-µ

OQAC, Viterbi

OQAC, BCJR

S-W Bound

 Figure 3. Decoding performance for a compression Figure 4. Decoding performance for a compression
 rate of 0.81 bits/symbol (Source entropy is 0.5) rate of 0.56 bits/symbol (Source entropy is 0.722)

1 This software is called DISCOVER-codec and is the copyrighted work of the research project “Distributed coding for video services”
(DISCOVER), FP6-2002-IST-C contract no.: 015314 of the European Commission. It cannot be copied, reproduced nor distributed without
the consent of the project consortium.
The DISCOVER software started from the so-called IST-WZ software developed at the Image Group from Instituto Superior Técnico
(IST), Lisbon-Portugal (http://amalia.img.lx.it.pt/), by Catarina Brites, João Ascenso, and Fernando Pereira.

have then been separately coded using the turbo codec already
present in the system and OQA codes. The side information has
been generated by interpolating neighboring key frames
inserted in between every Wyner-Ziv frame (GOP size = 2). A
4x4 DCT transform is used, so each bitplane in a frame
produces a string of 1584 binary symbols. 200 such symbol
strings from all available Wyner-Ziv frames have been
simulated and the results averaged.

With this set-up, the source probabilities (Pa) and the
conditional entropy (the correlation ¹ with the side
information) are fixed by the sequence, the interpolation
algorithm and the examined DCT band and bit plane. Varying
the ½ parameter (the overlapping factor) produces different
compression ratios and different SER, depicted in Figure 5 and
Figure 6. The Slepian-Wolf bound is also plot, and, again, the
trivial decoder used in the previous subsection is used as an
upper bound (1¡ ¹). The correlation of the side information
with the original string is independent of the compression ratio,
so this bound is now a straight line.

It can be seen that the SER increases as the compression
increases and approaches the Slepian-Wolf bound, and that the
OQA codes perform better than the trivial solution. Also, BCJR
decoding works better than Viterbi as expected. It is also
apparent that the performance of the OQA codes is still far
from that of the turbo codes, which achieve comparable SER
with higher compression. The next section points out some
possible lines of action to bridge the gap with turbo codes.

6. CONCLUSIONS AND FUTURE WORK

This work is a preliminary exploration of the possibility of
using Overlapped Quasi-Arithmetic Codes as a proposal for the
Slepian-Wolf coding approach. Simulation results indicate that
OQA codes perform better than just trusting the side
information, but are still far from the performance of state-of-
the-art turbo codes. However, the authors believe that the
approach is very promising and worth exploring.

These results can still be improved by designing
overlapping methods other than the one described in Section 2
and by taking source memory into account, for example.

Regarding encoding complexity, it is comparable to that of
turbo codes, since in practice turbo codes are also implemented
as state machines (plus an interleaver).

7. REFERENCES

[1] D. Slepian and J. Wolf, “Noiseless coding of correlated
information sources”, IEEE Trans. Inform. Theory, vol. 19 pp.
471-480, July 1973
[2] A. Wyner and J. Ziv, “The rate-distortion function for source
coding with side information at the decoder”, IEEE Trans. Inform.
Theory, vol. 22, pp. 1-10, January 1976
[3] R. Puri and K. Ramchandran. “PRISM: A new robust video
coding architecture based on distributed compression principles”.
Proc. of 40th Allerton Conf. on Comm., Control, and Computing,
Allerton, IL, Oct. 2002
[4] B. Girod, A. Aaron, S. Rane and D. Rebollo-Monedero,
“Distributed video coding”, Proc. of the IEEE, vol. 93, no. 1,
January 2005
[5] Qian Zhao, Effros, M., “Optimal code design for lossless and
near lossless source coding in multiple access networks”, Proc. of
Data Compression Conference (DCC 2001). Page(s):263 – 272,
27-29 March 2001, Snowbird, Utah, USA
[6] G. G. Langdon, Jr., “An introduction to arithmetic coding”,
IBM Journal of Research and Development, vol. 28, no. 2, pp. 135-
149, March 1984
[7] T. Guionnet and C. Guillemot, “Soft decoding and
synchronisation of arithmetic codes: application to image
transmission over noisy channels”, IEEE Trans. on Image
Processing, vol. 12, pp. 1599–1609, 2003.
[8] S. Ben-Jamaa, C. Weidmann, M. Kieffer, “Asymptotic Error-
Correcting Performance of Joint Source-Channel Schemes based
on Arithmetic Coding”, IEEE International Workshop on
Multimedia and Signal Processing (MMSP 2006), Victoria,
Canada, October 3-6, 2006
[9] T. Guionnet and C. Guillemot, “Soft and joint source-channel
decoding of quasi-arithmetic codes”, EURASIP Journal on applied
signal processing, vol. 3, pp. 394-411, Mar. 2004
[10] P. Howard and J. Vitter, “Practical implementations of
arithmetic coding”, Image and Text Compression, J.A. Storer, ed.
Kluwer Academic Publishers, Norwell, MA, pp. 85-112, 1992
[11] A. Viterbi, “Error bounds for convolution codes and an
asymptotically optimum decoding algorithm”, IEEE Trans. on
Inform. Theory, no. 13, pp. 260–269, 1967.
[12] L.Bahl, J.Jelinek, J.Raviv, and F.Raviv, “Optimal Decoding of
Linear Codes for minimising symbol error rate”, IEEE Trans. on
Inform. Theory, vol. IT-20, pp. 284-287, March 1974.
[13] C. Brites, J. Ascenso and F. Pereira, “Improving Transform
Domain Wyner-Ziv Video Coding Performance”, IEEE ICASSP,
Toulouse, France, May 14-19, 2006

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bits/symbol

SE
R

S-W bound
1-µ
OQAC - Viterbi
OQAC - BCJR
TC

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bits/symbol

SE
R

S-W bound
1-µ
OQAC - Viterbi
OQAC - BCJR
TC

 Figure 5. Results for N = 16, Band 0, bit plane 3. Figure 6. Results for N = 16, Band 3, bit plane 0.
 Pa = 0.54, H(X|Y) = 0.36 Pa = 0.75, H(X|Y) = 0.44

