
OVERLAPPED ARITHMETIC CODES WITH MEMORY

Xavi Artigas1, Simon Malinowski2, Christine Guillemot2 and Luis Torres1
 1Department of Signal Theory and Communications, 2IRISA
 Technical University of Catalonia Campus Universitaire de Beaulieu
 Campus Nord, D-5, Jordi Girona 1-3 35042 Rennes Cedex, FRANCE
 08034 Barcelona, SPAIN
 {xavi, luis}@gps.tsc.upc.edu {simon.malinowski, christine.guillemot}@irisa.fr
 http://gps-tsc.upc.es/GTAV/ http://www.irisa.fr/temics/

ABSTRACT
This paper describes a family of codes based on arithmetic
coding with overlapping intervals. These codes are not
uniquely decodable but the presence of correlated side
information at the decoder can be exploited to achieve a
vanishing decoding error probability, making them well
suited for the Slepian-Wolf problem. Since these are source
codes, they are also particularly well suited for sources
exhibiting non-uniform symbol probabilities or memory;
and the provided experimental results support this
assertion. The construction of the codes is described, along
with the corresponding soft decoding algorithm with side
information. Finally, simulation results are given which
compare very favourably against turbo codes in the
presence of source memory.

1. INTRODUCTION

Distributed source coding (DSC) refers to the problem
of compressing correlated signals captured by different
sensors which do not communicate between themselves.
DSC finds its foundation in the seminal Slepian-Wolf [1]
and Wyner-Ziv [2] theorems establishing lossless rate
bounds and rate-distortion bounds respectively. Most
Slepian-Wolf and Wyner-Ziv coding systems are based on
channel coding principles, using e.g., coset codes [3] or
turbo codes [4]. The statistical dependence between two
sources is modelled as a virtual correlation channel
analogous to binary symmetric channels or additive white
Gaussian noise (AWGN) channels. The use of entropy
source codes tailored to the conditional distribution
between the two sources has also been considered for DSC
in [5].

This paper considers the design of Slepian-Wolf codes
based on arithmetic and quasi-arithmetic codes. The basic
idea is to allow the intervals corresponding to each source
symbol to overlap. This procedure can achieve arbitrary
compression controlled by the amount of allowed overlap,
but, as already stated by Langdon in 1984 [6], it leads to a
code which is not uniquely decodable. The side information
available only at the decoder is then used to disambiguate
the overlaps and achieve a vanishing decoding error
probability.

It is shown that overlapped arithmetic (OA) and
overlapped quasi-arithmetic (OQA) codes can be modelled
with an encoding state machine (SM). The method to obtain
these state machines is adapted from the ones proposed in
[7] and [8]. The representation of OA and OQA codes by
SM allows defining a state model for soft decoding of these
codes. Finally, the side information available at the decoder
is integrated into this state model to help the decoder
remove the ambiguity introduced by the overlapping.

Multiple reasons motivate the research of source codes
for the Slepian-Wolf problem as an alternative to channel
codes. For example, the proposed DSC scheme can be
easily extended to non-binary sources by just considering
non-binary source codes. Moreover, for non uniform
sources or sources with memory, the additional information
about the distribution of the source can be directly exploited
by the decoder, as shown later. Finally, the considered
scheme does not require the source to be uniform to
perform optimally, as turbo codes do, for example.

The idea of overlapped arithmetic coding was first
introduced by the authors in [9], and also independently by
Grangetto et al. in [10] and [11]. This work expands on [9]
by taking source memory into account and by presenting
more exhaustive results that show that, in the presence of
source memory, the proposed codes perform better than
turbo codes by an ample margin.

Section 2 describes overlapped codes, their construction
and the problem raised by their ambiguous decoding (this
section follows closely that of [9] in order to make this a
self contained paper). Section 3 then introduces the used
soft decoding algorithm. Section 4 presents simulation
results for a broad spectrum of theoretical sources and
finally Section 5 draws some conclusions and sketches the
future research derived from this work.

2. OVERLAPPED ARITHMETIC CODES

Let X = X1; : : : ; XK be a symbol string generated by
a binary memoryless source. The alphabet of the source is
A = fa; bg and the probability of symbol a is denoted Pa.
The addition of memory will be described in the next
subsection. Only binary sources are considered in this work
but the results can be generalized to non-binary alphabets.

The work presented was developed within DISCOVER, a European Project (http://www.discoverdvc.org), funded under the European
Commission IST FP6 programme. This work has also been partially supported by TEC2005–07751–C02–02 grant of the Spanish Government.

In classical binary arithmetic coding, the interval [0; 1)
is recursively partitioned according to the source
probabilities. At each symbol clock instant n, the current
interval In = [Ln;Hn) is partitioned into two subintervals
Ia

n+1 and Ib
n+1 whose widths are proportional to Pa and

Pb = 1¡ Pa respectively:

Ia

n+1 =
£
Ln; Pa(Hn ¡ Ln)

¢
Ib

n+1 =
£
Pa(Hn ¡ Ln);Hn

¢ (1)

One of these subintervals is selected according to the
value of Xn+1 and becomes the current interval. Once the
last symbol is encoded, the encoder outputs enough bits to
distinguish the final interval from all other possible
intervals of [0; 1).

To reduce the coding delay, bits can be output during
the encoding process as soon as the current interval is
entirely in [0; 0:5) (a bit 0 is output) or entirely in [0:5; 1) (a
bit 1 is output). The current interval is rescaled each time a
bit is output. The arithmetic principle has been represented
in [12] as a stochastic model used for soft decoding of these
codes. The number of states is finite if the source
probabilities are known but it exponentially increases with
the sequence length.

It has been shown in [13] that the number of states of an
arithmetic code can be reduced if a slight loss in
compression performance is accepted. The initial interval is
set to [0; N) where N is an integer. The partitioning of the
current interval is done as in arithmetic coding but the
current intervals are always integer intervals. This principle
is called quasi-arithmetic (QA) coding. The main interest of
QA coding is that the number of states of the encoder is
finite and does not increase with the sequence length.

In the case of overlapped encoding, the current interval
is first partitioned according to the source probabilities, but
the subintervals are then modified so that they overlap. The
parameter ½ controls the width of overlapping between the
subintervals. It can be seen in Figure 1 that the overlapping
allows wider subintervals, and this leads to higher
compression. The subintervals of In = [Ln;Hn) are
defined as follows:

Ia

n+1 =
£
Ln; Pa(Hn ¡ Ln) + ½N=2

¢
Ib

n+1 =
£
Pa(Hn ¡ Ln)¡ ½N=2; Hn

¢ (2)

Note that this partitioning of the current interval can be
applied to both arithmetic (by taking N = 1) and quasi-
arithmetic coding (by taking N > 1 and by rounding the
bounds of the subintervals to the nearest integers).

Only quasi-arithmetic coding will be considered in the
following because i) it has been shown in [13] that the loss
of compression efficiency introduced by integer arithmetic
coding is very low (1% increase of the bitrate over the
entropy in the worst case, with N=256) and ii) quasi-
arithmetic coding allows the usage of well-known decoding
algorithms, as will be shown in the text section. Also, note
that QA coding is implemented with a SM, so its encoding
complexity is negligible (comparable to turbo encoding).
No floating point operations need to be performed at all.

Iteratively applying the overlapped method for
partitioning the current interval, a finite state encode is
obtained, which depends on N , Pa and the overlapping
factor ½. An example of OQA encoder is given in Figure 2.
This encoder is not uniquely decodable. For instance, when
at state [0, 8), symbol strings baa and abb are encoded with
the same bit string 101.

The overlap principle results in enlarging the current
interval, and hence in reducing the number of output bits.
Examples of the compression performance of an N = 256
OQA encoder are given in Figure 3 for different values of ½
and Pa. For ½ = 0 (no overlapping) the compression rate is
almost equal to the entropy (1% above the entropy, for
Pa=0.6), as one would expect from conventional arithmetic
codes. Larger values of ½ further reduce the rate below the
source entropy, down to any desired rate. The analytical
expression of the obtained rate is extremely cumbersome
and is not presented here.

a

b

Pa Pb0.0
ρ

1.0

b

Figure 1 - Example of overlapped arithmetic encoding. Ps is the
probability of symbol s and ½ is the overlapping factor. The

sequence abb has been encoded into the shown final interval.

[0,8)

[0,6) [0,5)

[2,8)

[2,7)

a/-

b/1

a/-

b/10

a/0

b/100

a/-

b/11

a/01

b/1

Figure 2 - SM for an example binary OQA encoder. N=8, Pa=0.7,
Pb=0.3 and ½=0.1. fa; bg are input symbols, f0; 1g are output bits.

A dash indicates a transition that does not output any bit.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

rho

bi
ts

/s
ym

bo
l

Pa=0.5
Pa=0.6
Pa=0.7
Pa=0.8
Pa=0.9

Figure 3 - Compression rates obtained with an N = 256

overlapped quasi-arithmetic code at different values of Pa and ½
after simulation of 1000 strings of 1000 symbols each.

2.1 Addition of source memory
If the source has an order-m memory, Pa will have

different values depending on the preceding m symbols.
For example, the higher bitplanes of an image or video
sequence typically contain long strings of 0’s or 1’s,
meaning that symbol 0 has a much greater probability of
occurrence if the previous symbol was also a 0 and
conversely for 1. Exploiting this source property has an
important impact on the coding performance because the
bound for the compression is then no longer the entropy of
the source, but the entropy rate (i.e., the entropy of a
symbol given all the previous symbols), which can be
significantly lower depending on the amount of memory of
the source.

To exploit the source memory, the state labels in the
encoding automaton can be expanded to include the context
(i.e., the m previous symbols), as in [0,8,a), which means
that the current interval for this state is [0,8) and that the
previous symbol was an a. Therefore, states [0,8,a) and
[0,8,b) are considered separately even when they represent
the same current interval, because they have a different Pa
(called conditional probabilities, and denoted Paja and Pajb
respectively) and therefore produce different subdivisions.

Once the automaton has been created taking memory
into consideration (in the state labels), the decoding process
does not need to deal with the memory anymore, besides
using the appropriate conditional Pa for the context of each
state. In the following, only order-1 symmetric memory has
been considered, therefore, the conditional probabilities are
uniquely identified by the memory correlation factor ½m:

 Paja = 1 + (½m ¡ 1)(1¡ Pa)
Pajb = ¡(½m ¡ 1)Pa

 (3)

½m ranges from 0 (memoryless source) to 1 (the source
only produces a’s or b’s).

3. SOFT DECODING WITH SIDE INFORMATION

Overlapped arithmetic and quasi-arithmetic encoders
have been defined in the previous section. Both kinds of
encoders can be defined with a state machine. The state
machine generates a variable number of bits depending on
the current state and the next source symbol that has to be
encoded. A decoding SM can be computed by just inverting
the inputs and outputs of the encoding SM.

Let T = f®0; : : : ; ®d¡1g be the set of states of the
decoding SM. Two transitions exit each state corresponding
to the two symbols that can be encoded, as seen in Figure 2.
For every transition t in the encoding SM, let bt be the bit
string output by this transition and st the symbol that
triggered it. The length of bt is denoted bt .

The overlapping mechanism introduces ambiguity in the
encoded bit string, and this means that, even if the received
bit string is error-free, more than one symbol sequence will
be retrieved by the decoding state machine. In the

following, it will be assumed that side information
Y = Y1 : : : ; YK correlated to X is available at the decoder,
and it will be modelled as if it had passed through a binary
symmetric channel (BSC) with crossover probability 1¡ ¹.
In other words, for 1 6 i 6 K , P(Xi = Yi) = ¹.

In the memoryless case, the Slepian-Wolf bound for the
lowest achievable (still decodable) rate for X can be
calculated as:
 RSW

X = H(XjY) = H(X)¡H(Y) + H(Y jX) (4)
Where H(Y jX) is the binary entropy of ¹ and H(Y)

is the binary entropy of Pa¹ + (1¡ Pa)(1¡ ¹). For
sources with memory the following equation is used. Note
that H(Y jX) remains the same because the channel has
been assumed memoryless.

RSW

X =H(XnjXn¡1; Yn)

=H(XnjXn¡1)¡H(YnjXn¡1) + H(YnjXn)
 (5)

In order to optimally exploit the side information Y , a
symbol-clock-based state model is defined [7][12]. The
state model for soft decoding of overlapped codes is
defined by the pairs (Nk;Mk) where Nk is the state of the
decoding SM at the bit clock instant k (i.e., Nk 2 T) and
Mk represents the possible values of the symbol clock at
the bit clock instant k (i.e. 1 6 Mk 6 K).

The probability of transition t is then defined as:

P
¡
Nk =®i;Mk =m

¯̄
Nl =®j;Ml =m¡1

¢
=(

P
¡
Nk =®i

¯̄
Nl =®j

¢
if k¡ l = bt

0 otherwise
 (6)

Where the probabilities P(Nk = ®ijNl = ®j) are
deduced from the source statistics and the decoding SM.
The BCJR [14] algorithm can then be applied on this state
model in order to estimate X. The symbol-clock-based
model defined above allows integrating the side
information brought by Y in the decoding trellis. To take
into account this additional information, the branch metric
of transition t, denoted °t(Nk; Mk jNl;Ml), used for the
BCJR algorithm is defined in (7), where Uk

l is the received
bit string from bit l to bit k and P(YmjXm = st) is deduced
from the correlation between X and Y :

 P
¡
Ym

¯̄
Xm = st

¢
=

(
¹ if Ym = st

1¡¹ otherwise
 (8)

The BCJR algorithm is then applied on this state model
to compute the a posteriori marginal probabilities of each
symbol P(XmjY).

4. EXPERIMENTAL RESULTS

In order to present the performance of this new class of
codes, four different sources have been simulated to try to
cover the broadest possible spectrum. The four sources are
symmetric and asymmetric, with and without memory.

 °
¡
®i;m

¯̄
®j ;m¡ 1

¢
=

(
P
¡
Nk = ®i;Mk = m

¯̄
Nl = ®j ;Ml = m¡ 1

¢
£ P

¡
Ym

¯̄
Xm = st

¢
if Uk

l = bt

0 otherwise
 (7)

Once the source is fixed, the decoding error probability (or
Symbol Error Rate, SER), depends mainly on two
variables: the bit rate and the side information correlation
¹. Instead of the complete simulation of this two-
dimensional search space, which would be cumbersome to
plot and understand, two experiments have been conducted:
the first one leaves ¹ fixed and changes the rate, whereas
the second one leaves the rate fixed and changes ¹.

4.1 Fixed side information quality
In this experiment a fixed conditional entropy

H(Y jX) = 0:5 has been selected (corresponding to a
crossover probability ¹ = 0:889) because the obtained
results are very illustrative. The Slepian-Wolf bound has
been calculated using (5) and is used as the lower limit for
the rate axis, since rates below this bound are not decodable
according to the Slepian-Wolf theorem [1]. The upper limit
for the rate axis is roughly the entropy rate of the source,
since it is pointless to use distributed source coding above
this rate, as conventional entropy coding can achieve this
rate without incurring in decoding errors. The block length
is 1000 symbols; turbo codes use random interleavers and
have taken the source probabilities into account in the
branch metrics, including memory in the first constituent
decoder. The second constituent decoder cannot make use
of the source memory because it is destroyed by the
interleaver.

Figure 4 shows the obtained Symbol Error rate (SER)
for the four different sources (left column is memoryless,
right column has memory, upper row has symmetric
symbols, lower row has asymmetric symbols). It can be
seen that, for memoryless symmetric sources turbo codes
produce much lower SER than OQA codes at any given
rate. This is not surprising, since this is the kind of source
channel codes are tailored to work with. However, for

sources with memory or asymmetric, OQA codes perform
better. In the presence of memory, the SER difference for a
given rate can be as much as two orders of magnitude.

Since turbo codes are known to work better for long
block lengths, another curve has been added for a turbo
code with a long interleaver (or block length) of 104
symbols. It can be observed that indeed the turbo code with
the long interleaver always works better than the same code
with a shorter block length, and it also outperforms the
OQA codes in both memoryless cases. However, for
sources with memory, the length of the interleaver does not
make a substantial difference and both turbo codes achieve
worse SER than the OQA code at any given rate.

4.2 Fixed rate
This experiment aims at understanding the dependence

of the obtained SER with the quality of the side information
H(Y jX). A fixed rate has been selected, equal to the 75%
of the entropy rate of the source (so that it is not achievable
by conventional entropy coding) and H(Y jX) is moved
throughout its whole range, from 0 (totally correlated side
information) to 1 (totally uncorrelated). Using (5), the point
at which the code should be decodable given the rate and
the source probabilities is also calculated and used as the
upper limit for the plot. This point is again the Slepian-
Wolf bound: values of H(Y jX) to its left should be
decodable, and values to its right should not.

Figure 5 shows the obtained results with the same
sources and conditions as Figure 4. It can be observed that
similar behaviour as in the previous experiment is present:
OQA codes perform favourably in the presence of memory,
but not as much as in the previous experiment, indicating
that the dependence of the decoding performance with the
rate and the side information is not immediately evident.

Pa = 0:5
½m = 0

+
HX = 1

H(Y jX)= 0:5
+

RSW
X = 0:5

 1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.5 0.6 0.7 0.8 0.9 1
Rate (bits/symbol)

SE
R

OQA CODE

TURBO CODE (5,7)

TURBO CODE (5,7),
long interleaver

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.18 0.2 0.22 0.24 0.26 0.28 0.3
Rate (bits/symbol)

SE
R

OQA CODE

TURBO CODE (5,7)

TURBO CODE (5,7),
long interleaver

Pa = 0:5
½m = 0:9

+
HX = 0:286

H(Y jX)= 0:5
+

RSW
X = 0:180

Pa = 0:9
½m = 0

+
HX = 0:469

H(Y jX)= 0:5
+

RSW
X = 0:273

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.273 0.323 0.373 0.423 0.473
Rate (bits/symbol)

SE
R

OQA CODE

TURBO CODE (5,7)

TURBO CODE (5,7),
long interleaver

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.212 0.262 0.312 0.362
Rate (bits/symbol)

SE
R

OQA CODE

TURBO CODE (5,7)

TURBO CODE (5,7),
long interleaver

Pa = 0:9
½m = 0:5

+
HX = 0:357

H(Y jX)= 0:5
+

RSW
X = 0:212

Figure 4 – Decoding performance for a fixed H(Y jX) = 0:5. 100 sequences of 103 bits have been simulated. For comparison, a turbo
code with a long interleaver of 104 bits is also included. The leftmost point of the rate axis corresponds to RSW

X calculated using (5).

5. CONCLUSIONS

This paper has described a Slepian-Wolf coding
approach based on overlapped quasi-arithmetic codes,
considering, particularly, the case of sources with memory.
The first reported results show that, for sources with
memory, OQA codes can outperform turbo codes,
especially for block lengths up to 103 and 104 symbols. A
possible reason is that source codes are better tailored to
exploit source statistics than channel codes. Further work
will be devoted to the study of other overlapping
mechanisms as well as of iterative structures in order to try
to improve the performance of these new codes.

REFERENCES
[1] D. Slepian and J. Wolf, “Noiseless coding of correlated
information sources”, IEEE Trans. Inform. Theory, vol. 19 pp.
471-480, July 1973

[2] Wyner and J. Ziv, “The rate-distortion function for source
coding with side information at the decoder”, IEEE Trans. Inform.
Theory, vol. 22, pp. 1-10, January 1976

[3] R. Puri and K. Ramchandran. “PRISM: A new robust video
coding architecture based on distributed compression principles”.
Proc. of 40th Allerton Conf. on Comm., Control, and Computing,
Allerton, IL, Oct. 2002

[4] B. Girod, A. Aaron, S. Rane and D. Rebollo-Monedero,
“Distributed video coding”, Proc. of the IEEE, vol. 93, no. 1,
January 2005

[5] Qian Zhao, Effros, M., “Optimal code design for lossless and
near lossless source coding in multiple access networks”, Proc. of
Data Compression Conference (DCC 2001). Page(s):263 – 272,
27-29 March 2001, Snowbird, Utah, USA

[6] G. G. Langdon, Jr., “An introduction to arithmetic coding”,
IBM Journal of Research and Development, vol. 28, no. 2, pp.
135-149, March 1984

[7] T. Guionnet and C. Guillemot, “Soft decoding and
synchronisation of arithmetic codes: application to image
transmission over noisy channels”, IEEE Trans. on Image
Processing, vol. 12, pp. 1599–1609, 2003.

[8] S. Ben-Jamaa, C. Weidmann, M. Kieffer, “Asymptotic Error-
Correcting Performance of Joint Source-Channel Schemes based
on Arithmetic Coding”, IEEE International Workshop on
Multimedia and Signal Processing (MMSP 2006), Victoria,
Canada, October 3-6, 2006

[9] X. Artigas, S. Malinowski, C. Guillemot, L. Torres,
“Overlapped quasi-arithmetic codes for distributed video coding”,
IEEE International Conference on Image Processing (ICIP), San
Antonio, USA, September 16-19, 2007

[10] M. Grangetto, E. Magli, G. Olmo, “Distributed arithmetic
coding”, IEEE Communication letters, vol. 11, no. 11, pp. 883-
885, November 2007.

[11] M. Grangetto, E. Magli, G. Olmo, “Symmetric Distributed
Arithmetic Coding of Correlated Sources”, IEEE International
Workshop on Multimedia Signal Processing (MMSP), Crete,
Greece, Oct. 2007

[12] T. Guionnet and C. Guillemot, “Soft and joint source-channel
decoding of quasi-arithmetic codes”, EURASIP Journal on
applied signal processing, vol. 3, pp. 394-411, Mar. 2004

[13] P. Howard and J. Vitter, “Practical implementations of
arithmetic coding”, Image and Text Compression, J.A. Storer, ed.
Kluwer Academic Publishers, Norwell, MA, pp. 85-112, 1992

[14] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal
Decoding of Linear Codes for Minimising Symbol Error Rate”,
IEEE Trans. on Inform. Theory, vol. IT-20, pp. 284-287, March
1974.

Pa = 0:5
½m = 0

+
HX = 1

RX = 0:75
+

HSW
Y jX = 0:75

 1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
H(Y|X)

SE
R

OQA CODE

TURBO CODE (5,7)

TURBO CODE (5,7),
long interleaver

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 0.1 0.2 0.3 0.4 0.5 0.6
H(Y|X)

SE
R

OQA CODE

TURBO CODE (5,7)

TURBO CODE (5,7),
long interleaver

Pa = 0:5
½m = 0:9

+
HX = 0:286

RX = 0:215
+

HSW
Y jX = 0:653

Pa = 0:9
½m = 0

+
HX = 0:469

RX = 0:351
+

HSW
Y jX = 0:69 1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 0.1 0.2 0.3 0.4 0.5 0.6
H(Y|X)

SE
R

OQA CODE

TURBO CODE (5,7)

TURBO CODE (5,7),
long interleaver

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 0.1 0.2 0.3 0.4 0.5 0.6
H(Y|X)

SE
R

OQA CODE

TURBO CODE (5,7)

TURBO CODE (5,7),
long interleaver

Pa = 0:9
½m = 0:5

+
HX = 0:357

RX = 0:268
+

HSW
Y jX = 0:684

Figure 5 – Decoding performance for a fixed rate RX equal to 0.75 times the entropy rate of the source. The same conditions as in Figure
4 have been used. HSW

Y jX stands for the conditional entropy (and therefore ¹) required to reach the Slepian-Wolf bound, and it
corresponds to the rightmost point of the conditional entropy axis.

