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ABSTRACT 
This paper describes a family of codes based on arithmetic 
coding with overlapping intervals. These codes are not 
uniquely decodable but the presence of correlated side 
information at the decoder can be exploited to achieve a 
vanishing decoding error probability, making them well 
suited for the Slepian-Wolf problem. Since these are source 
codes, they are also particularly well suited for sources 
exhibiting non-uniform symbol probabilities or memory; 
and the provided experimental results support this 
assertion. The construction of the codes is described, along 
with the corresponding soft decoding algorithm with side 
information. Finally, simulation results are given which 
compare very favourably against turbo codes in the 
presence of source memory. 

1. INTRODUCTION 

Distributed source coding (DSC) refers to the problem 
of compressing correlated signals captured by different 
sensors which do not communicate between themselves. 
DSC finds its foundation in the seminal Slepian-Wolf [1] 
and Wyner-Ziv [2] theorems establishing lossless rate 
bounds and rate-distortion bounds respectively. Most 
Slepian-Wolf and Wyner-Ziv coding systems are based on 
channel coding principles, using e.g., coset codes [3] or 
turbo codes [4]. The statistical dependence between two 
sources is modelled as a virtual correlation channel 
analogous to binary symmetric channels or additive white 
Gaussian noise (AWGN) channels. The use of entropy 
source codes tailored to the conditional distribution 
between the two sources has also been considered for DSC 
in [5]. 

This paper considers the design of Slepian-Wolf codes 
based on arithmetic and quasi-arithmetic codes. The basic 
idea is to allow the intervals corresponding to each source 
symbol to overlap. This procedure can achieve arbitrary 
compression controlled by the amount of allowed overlap, 
but, as already stated by Langdon in 1984 [6], it leads to a 
code which is not uniquely decodable. The side information 
available only at the decoder is then used to disambiguate 
the overlaps and achieve a vanishing decoding error 
probability. 

It is shown that overlapped arithmetic (OA) and 
overlapped quasi-arithmetic (OQA) codes can be modelled 
with an encoding state machine (SM). The method to obtain 
these state machines is adapted from the ones proposed in 
[7] and [8]. The representation of OA and OQA codes by 
SM allows defining a state model for soft decoding of these 
codes. Finally, the side information available at the decoder 
is integrated into this state model to help the decoder 
remove the ambiguity introduced by the overlapping. 

Multiple reasons motivate the research of source codes 
for the Slepian-Wolf problem as an alternative to channel 
codes. For example, the proposed DSC scheme can be 
easily extended to non-binary sources by just considering 
non-binary source codes. Moreover, for non uniform 
sources or sources with memory, the additional information 
about the distribution of the source can be directly exploited 
by the decoder, as shown later. Finally, the considered 
scheme does not require the source to be uniform to 
perform optimally, as turbo codes do, for example. 

The idea of overlapped arithmetic coding was first 
introduced by the authors in [9], and also independently by 
Grangetto et al. in [10] and [11]. This work expands on [9] 
by taking source memory into account and by presenting 
more exhaustive results that show that, in the presence of 
source memory, the proposed codes perform better than 
turbo codes by an ample margin. 

Section 2 describes overlapped codes, their construction 
and the problem raised by their ambiguous decoding (this 
section follows closely that of [9] in order to make this a 
self contained paper). Section 3 then introduces the used 
soft decoding algorithm. Section 4 presents simulation 
results for a broad spectrum of theoretical sources and 
finally Section 5 draws some conclusions and sketches the 
future research derived from this work. 

2. OVERLAPPED ARITHMETIC CODES 

Let X = X1; : : : ; XK be a symbol string generated by 
a binary memoryless source. The alphabet of the source is 
A = fa; bg and the probability of symbol a is denoted Pa. 
The addition of memory will be described in the next 
subsection. Only binary sources are considered in this work 
but the results can be generalized to non-binary alphabets. 

The work presented was developed within DISCOVER, a European Project (http://www.discoverdvc.org), funded under the European 
Commission IST FP6 programme. This work has also been partially supported by TEC2005–07751–C02–02 grant of the Spanish Government.



In classical binary arithmetic coding, the interval [0; 1) 
is recursively partitioned according to the source 
probabilities. At each symbol clock instant n, the current 
interval In = [Ln;Hn) is partitioned into two subintervals 
Ia

n+1 and Ib
n+1 whose widths are proportional to Pa and 

Pb = 1¡ Pa respectively: 

 
Ia

n+1 =
£
Ln; Pa(Hn ¡ Ln)

¢
Ib

n+1 =
£
Pa(Hn ¡ Ln);Hn

¢ (1) 

One of these subintervals is selected according to the 
value of Xn+1 and becomes the current interval. Once the 
last symbol is encoded, the encoder outputs enough bits to 
distinguish the final interval from all other possible 
intervals of [0; 1). 

To reduce the coding delay, bits can be output during 
the encoding process as soon as the current interval is 
entirely in [0; 0:5) (a bit 0 is output) or entirely in [0:5; 1) (a 
bit 1 is output). The current interval is rescaled each time a 
bit is output. The arithmetic principle has been represented 
in [12] as a stochastic model used for soft decoding of these 
codes. The number of states is finite if the source 
probabilities are known but it exponentially increases with 
the sequence length. 

It has been shown in [13] that the number of states of an 
arithmetic code can be reduced if a slight loss in 
compression performance is accepted. The initial interval is 
set to [0; N) where N  is an integer. The partitioning of the 
current interval is done as in arithmetic coding but the 
current intervals are always integer intervals. This principle 
is called quasi-arithmetic (QA) coding. The main interest of 
QA coding is that the number of states of the encoder is 
finite and does not increase with the sequence length. 

In the case of overlapped encoding, the current interval 
is first partitioned according to the source probabilities, but 
the subintervals are then modified so that they overlap. The 
parameter ½ controls the width of overlapping between the 
subintervals. It can be seen in Figure 1 that the overlapping 
allows wider subintervals, and this leads to higher 
compression. The subintervals of In = [Ln;Hn) are 
defined as follows: 

 
Ia

n+1 =
£
Ln; Pa(Hn ¡ Ln) + ½N=2

¢
Ib

n+1 =
£
Pa(Hn ¡ Ln)¡ ½N=2; Hn

¢ (2) 

Note that this partitioning of the current interval can be 
applied to both arithmetic (by taking N = 1) and quasi-
arithmetic coding (by taking N > 1 and by rounding the 
bounds of the subintervals to the nearest integers). 

Only quasi-arithmetic coding will be considered in the 
following because i) it has been shown in [13] that the loss 
of compression efficiency introduced by integer arithmetic 
coding is very low (1% increase of the bitrate over the 
entropy in the worst case, with N=256) and ii) quasi-
arithmetic coding allows the usage of well-known decoding 
algorithms, as will be shown in the text section. Also, note 
that QA coding is implemented with a SM, so its encoding 
complexity is negligible (comparable to turbo encoding). 
No floating point operations need to be performed at all. 

Iteratively applying the overlapped method for 
partitioning the current interval, a finite state encode is 
obtained, which depends on N , Pa and the overlapping 
factor ½. An example of OQA encoder is given in Figure 2. 
This encoder is not uniquely decodable. For instance, when 
at state [0, 8), symbol strings baa and abb are encoded with 
the same bit string 101. 

The overlap principle results in enlarging the current 
interval, and hence in reducing the number of output bits. 
Examples of the compression performance of an N = 256 
OQA encoder are given in Figure 3 for different values of ½ 
and Pa. For ½ = 0 (no overlapping) the compression rate is 
almost equal to the entropy (1% above the entropy, for 
Pa=0.6), as one would expect from conventional arithmetic 
codes. Larger values of ½ further reduce the rate below the 
source entropy, down to any desired rate. The analytical 
expression of the obtained rate is extremely cumbersome 
and is not presented here. 
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Figure 1 - Example of overlapped arithmetic encoding. Ps is the 
probability of symbol s and ½ is the overlapping factor. The 

sequence abb has been encoded into the shown final interval. 
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Figure 2 - SM for an example binary OQA encoder. N=8, Pa=0.7, 
Pb=0.3 and ½=0.1. fa; bg are input symbols, f0; 1g are output bits. 

A dash indicates a transition that does not output any bit. 
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Figure 3 - Compression rates obtained with an N = 256 

overlapped quasi-arithmetic code at different values of Pa and ½ 
after simulation of 1000 strings of 1000 symbols each. 



2.1 Addition of source memory 
If the source has an order-m memory, Pa will have 

different values depending on the preceding m symbols. 
For example, the higher bitplanes of an image or video 
sequence typically contain long strings of 0’s or 1’s, 
meaning that symbol 0 has a much greater probability of 
occurrence if the previous symbol was also a 0 and 
conversely for 1. Exploiting this source property has an 
important impact on the coding performance because the 
bound for the compression is then no longer the entropy of 
the source, but the entropy rate (i.e., the entropy of a 
symbol given all the previous symbols), which can be 
significantly lower depending on the amount of memory of 
the source. 

To exploit the source memory, the state labels in the 
encoding automaton can be expanded to include the context 
(i.e., the m previous symbols), as in [0,8,a), which means 
that the current interval for this state is [0,8) and that the 
previous symbol was an a. Therefore, states [0,8,a) and 
[0,8,b) are considered separately even when they represent 
the same current interval, because they have a different Pa 
(called conditional probabilities, and denoted Paja and Pajb 
respectively) and therefore produce different subdivisions. 

Once the automaton has been created taking memory 
into consideration (in the state labels), the decoding process 
does not need to deal with the memory anymore, besides 
using the appropriate conditional Pa for the context of each 
state. In the following, only order-1 symmetric memory has 
been considered, therefore, the conditional probabilities are 
uniquely identified by the memory correlation factor ½m: 

 Paja = 1 + (½m ¡ 1)(1¡ Pa)
Pajb = ¡(½m ¡ 1)Pa

 (3) 

½m ranges from 0 (memoryless source) to 1 (the source 
only produces a’s or b’s). 

3. SOFT DECODING WITH SIDE INFORMATION 

Overlapped arithmetic and quasi-arithmetic encoders 
have been defined in the previous section. Both kinds of 
encoders can be defined with a state machine. The state 
machine generates a variable number of bits depending on 
the current state and the next source symbol that has to be 
encoded. A decoding SM can be computed by just inverting 
the inputs and outputs of the encoding SM. 

Let T = f®0; : : : ; ®d¡1g be the set of states of the 
decoding SM. Two transitions exit each state corresponding 
to the two symbols that can be encoded, as seen in Figure 2. 
For every transition t in the encoding SM, let bt be the bit 
string output by this transition and st the symbol that 
triggered it. The length of bt is denoted bt . 

The overlapping mechanism introduces ambiguity in the 
encoded bit string, and this means that, even if the received 
bit string is error-free, more than one symbol sequence will 
be retrieved by the decoding state machine. In the 

following, it will be assumed that side information 
Y = Y1 : : : ; YK correlated to X is available at the decoder, 
and it will be modelled as if it had passed through a binary 
symmetric channel (BSC) with crossover probability 1¡ ¹. 
In other words, for 1 6 i 6 K , P(Xi = Yi) = ¹. 

In the memoryless case, the Slepian-Wolf bound for the 
lowest achievable (still decodable) rate for X can be 
calculated as: 
 RSW

X = H(XjY ) = H(X)¡H(Y ) + H(Y jX) (4) 
Where H(Y jX) is the binary entropy of ¹ and H(Y ) 

is the binary entropy of Pa¹ + (1¡ Pa)(1¡ ¹). For 
sources with memory the following equation is used. Note 
that H(Y jX) remains the same because the channel has 
been assumed memoryless. 

 
RSW

X =H(XnjXn¡1; Yn)

=H(XnjXn¡1)¡H(YnjXn¡1) + H(YnjXn)
 (5) 

In order to optimally exploit the side information Y , a 
symbol-clock-based state model is defined [7][12]. The 
state model for soft decoding of overlapped codes is 
defined by the pairs (Nk;Mk) where Nk is the state of the 
decoding SM at the bit clock instant k (i.e., Nk 2 T ) and 
Mk represents the possible values of the symbol clock at 
the bit clock instant k (i.e. 1 6 Mk 6 K). 

The probability of transition t is then defined as: 

 

P
¡
Nk =®i;Mk =m

¯̄
Nl =®j;Ml =m¡1

¢
=(

P
¡
Nk =®i

¯̄
Nl =®j

¢
if k¡ l = bt

0 otherwise
 (6) 

Where the probabilities P(Nk = ®ijNl = ®j) are 
deduced from the source statistics and the decoding SM. 
The BCJR [14] algorithm can then be applied on this state 
model in order to estimate X. The symbol-clock-based 
model defined above allows integrating the side 
information brought by Y  in the decoding trellis. To take 
into account this additional information, the branch metric 
of transition t, denoted °t(Nk; Mk jNl;Ml), used for the 
BCJR algorithm is defined in (7), where Uk

l  is the received 
bit string from bit l to bit k and P(YmjXm = st) is deduced 
from the correlation between X and Y : 

 P
¡
Ym

¯̄
Xm = st

¢
=

(
¹ if Ym = st

1¡¹ otherwise
 (8) 

The BCJR algorithm is then applied on this state model 
to compute the a posteriori marginal probabilities of each 
symbol P(XmjY ). 

4. EXPERIMENTAL RESULTS 

In order to present the performance of this new class of 
codes, four different sources have been simulated to try to 
cover the broadest possible spectrum. The four sources are 
symmetric and asymmetric, with and without memory. 

 °
¡
®i;m

¯̄
®j ;m¡ 1

¢
=

(
P
¡
Nk = ®i;Mk = m

¯̄
Nl = ®j ;Ml = m¡ 1

¢
£ P

¡
Ym

¯̄
Xm = st

¢
if Uk

l = bt

0 otherwise
 (7)



Once the source is fixed, the decoding error probability (or 
Symbol Error Rate, SER), depends mainly on two 
variables: the bit rate and the side information correlation 
¹. Instead of the complete simulation of this two-
dimensional search space, which would be cumbersome to 
plot and understand, two experiments have been conducted: 
the first one leaves ¹ fixed and changes the rate, whereas 
the second one leaves the rate fixed and changes ¹. 

4.1 Fixed side information quality 
In this experiment a fixed conditional entropy 

H(Y jX) = 0:5 has been selected (corresponding to a 
crossover probability ¹ = 0:889) because the obtained 
results are very illustrative. The Slepian-Wolf bound has 
been calculated using (5) and is used as the lower limit for 
the rate axis, since rates below this bound are not decodable 
according to the Slepian-Wolf theorem [1]. The upper limit 
for the rate axis is roughly the entropy rate of the source, 
since it is pointless to use distributed source coding above 
this rate, as conventional entropy coding can achieve this 
rate without incurring in decoding errors. The block length 
is 1000 symbols; turbo codes use random interleavers and 
have taken the source probabilities into account in the 
branch metrics, including memory in the first constituent 
decoder. The second constituent decoder cannot make use 
of the source memory because it is destroyed by the 
interleaver. 

Figure 4 shows the obtained Symbol Error rate (SER) 
for the four different sources (left column is memoryless, 
right column has memory, upper row has symmetric 
symbols, lower row has asymmetric symbols). It can be 
seen that, for memoryless symmetric sources turbo codes 
produce much lower SER than OQA codes at any given 
rate. This is not surprising, since this is the kind of source 
channel codes are tailored to work with. However, for 

sources with memory or asymmetric, OQA codes perform 
better. In the presence of memory, the SER difference for a 
given rate can be as much as two orders of magnitude. 

Since turbo codes are known to work better for long 
block lengths, another curve has been added for a turbo 
code with a long interleaver (or block length) of 104 
symbols. It can be observed that indeed the turbo code with 
the long interleaver always works better than the same code 
with a shorter block length, and it also outperforms the 
OQA codes in both memoryless cases. However, for 
sources with memory, the length of the interleaver does not 
make a substantial difference and both turbo codes achieve 
worse SER than the OQA code at any given rate. 

4.2 Fixed rate 
This experiment aims at understanding the dependence 

of the obtained SER with the quality of the side information 
H(Y jX). A fixed rate has been selected, equal to the 75% 
of the entropy rate of the source (so that it is not achievable 
by conventional entropy coding) and H(Y jX) is moved 
throughout its whole range, from 0 (totally correlated side 
information) to 1 (totally uncorrelated). Using (5), the point 
at which the code should be decodable given the rate and 
the source probabilities is also calculated and used as the 
upper limit for the plot. This point is again the Slepian-
Wolf bound: values of H(Y jX) to its left should be 
decodable, and values to its right should not. 

Figure 5 shows the obtained results with the same 
sources and conditions as Figure 4. It can be observed that 
similar behaviour as in the previous experiment is present: 
OQA codes perform favourably in the presence of memory, 
but not as much as in the previous experiment, indicating 
that the dependence of the decoding performance with the 
rate and the side information is not immediately evident. 
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Figure 4 – Decoding performance for a fixed H(Y jX) = 0:5. 100 sequences of 103 bits have been simulated. For comparison, a turbo 
code with a long interleaver of 104 bits is also included. The leftmost point of the rate axis corresponds to RSW

X calculated using (5). 



5. CONCLUSIONS 

This paper has described a Slepian-Wolf coding 
approach based on overlapped quasi-arithmetic codes, 
considering, particularly, the case of sources with memory.  
The first reported results show that, for sources with 
memory, OQA codes can outperform turbo codes, 
especially for block lengths up to 103 and 104 symbols. A 
possible reason is that source codes are better tailored to 
exploit source statistics than channel codes. Further work 
will be devoted to the study of other overlapping 
mechanisms as well as of iterative structures in order to try 
to improve the performance of these new codes. 
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Figure 5 – Decoding performance for a fixed rate RX equal to 0.75 times the entropy rate of the source. The same conditions as in Figure 
4 have been used. HSW

Y jX stands for the conditional entropy (and therefore ¹) required to reach the Slepian-Wolf bound, and it 
corresponds to the rightmost point of the conditional entropy axis. 


